如圖,正方形ABCD中,在AD的延長(zhǎng)線上取點(diǎn)E,F(xiàn),使DE=AD,DF=BD,連接BF分別交CD,CE于H,G.下列結(jié)論:①EC=2DG;②∠GDH=∠GHD;③S△CDG=S四邊形DHGE;④圖中有8個(gè)等腰三角形.其中正確的共有


  1. A.
    1個(gè)
  2. B.
    2個(gè)
  3. C.
    3個(gè)
  4. D.
    4個(gè)
B
分析:根據(jù)正方形的性質(zhì)和已知推出四邊形DECB是平行四邊形,得到BD=CE,BD∥CE,無(wú)法證出G為CE的中點(diǎn);得到BD∥CE,推出∠DCG=∠BDC=45°,求出∠BGC=∠GBC,得到BC=CG=CD,
求出∠CDG=∠DHG,即可;根據(jù)三角形的面積公式推出△CDG和四邊形DHGE的面積相等;等腰三角形有△ABD,△CDB,△BDF,△CDE,△BCG,△DGH,△EGF,△DFG,△CDG.
解答:∵正方形ABCD,DE=AD,
∴AD∥BC,DE=BC,∠EDC=90°,
∴四邊形DECB是平行四邊形,
∴BD=CE,BD∥CE,
∵DE=BC=AD,
∴∠DCE=∠DEC=45°,
要使CE=2DG,只要G為CE的中點(diǎn)即可,
但DE=DC,DF=BD,
∴EF≠BC,
即△EFG和△BCG不全等,
∴G不是CE中點(diǎn),∴①錯(cuò)誤;
∵∠ADB=45°,DF=BD,
∴∠F=∠DBH=∠ADB=22.5°,
∴∠DHG=180°-90°-22.5°=67.5°,
∵BD∥CE,
∴∠DCG=∠BDC=45°,
∵∠DHG=67.5°,
∴∠HGC=22.5°,∠DEC=45°,
∵∠BGC=180°-22.5°-135°=22.5°=∠GBC,
∴BC=CG=CD,
∴∠CDG=∠CGD=(180°-45°)=67.5°=∠DHG,∴②正確;
因?yàn)镃G=DE=CD,∠DCE=∠DEC=45,∠HGC=22.5°,∠DGE=90-∠CDG=90-67.5=22.5°,
∴△DEG≌△CHG,
要使△CDG和四邊形DHGE的面積相等,只要△DEG和△CHG的面積相等即可,根據(jù)已知條件△DEG≌△CHG,
∴③S△CDG=S四邊形DHGE;正確,
等腰三角形有△ABD,△CDB,△BDF,△CDE,△BCG,△DGH,△EGF,△CDG,△DGF∴④錯(cuò)誤;
故選B.
點(diǎn)評(píng):本題主要考查對(duì)三角形的內(nèi)角和定理,等腰三角形的性質(zhì)和判定,正方形的性質(zhì),平行四邊形的性質(zhì)和判定等知識(shí)點(diǎn)的理解和掌握,綜合運(yùn)用這些性質(zhì)進(jìn)行推理是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點(diǎn),且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,正方形ABCD的邊長(zhǎng)為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角板的兩條直角邊與CD交于點(diǎn)F,與CB延長(zhǎng)線交于點(diǎn)E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長(zhǎng).
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案