如圖,P為半徑為5的⊙O內(nèi)一點(diǎn),且PO=3,在過點(diǎn)P的所有⊙O的弦中,弦長為整數(shù)的弦有    (    )

  A.2條     B.3條      C.4條      D.5條

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為1,等腰直角三角形ABC的頂點(diǎn)B的坐標(biāo)為(
2
,0),∠CAB=90°,AC=AB,頂點(diǎn)A在⊙O上運(yùn)動(dòng).
(1)當(dāng)點(diǎn)A在x軸上時(shí),求點(diǎn)C的坐標(biāo);
(2)當(dāng)點(diǎn)A運(yùn)動(dòng)到x軸的負(fù)半軸上時(shí),試判斷直線BC與⊙O位置關(guān)系,并說明理由;
(3)設(shè)點(diǎn)A的橫坐標(biāo)為x,△ABC的面積為S,求S與x之間的函數(shù)關(guān)系式,并求出S的最大值與最小值;
(4)當(dāng)直線AB與⊙O相切時(shí),求AB所在直線對(duì)應(yīng)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廊坊一模)圓的滾動(dòng)問題探索:
(1)如圖1,一個(gè)半徑為r的圓沿直線方向從A地滾動(dòng)到B地,若AB的長為m,則該圓在滾動(dòng)過程中自轉(zhuǎn)了
m
2πr
m
2πr
圈.(用含的式子表示)
試驗(yàn):
現(xiàn)有兩個(gè)半徑相等的圓(如圖5),將⊙O2固定,⊙O1沿定圓的周圍滾動(dòng),滾動(dòng)時(shí)兩圓保持相外切的位置關(guān)系.當(dāng)⊙O1沿⊙O2周圍滾動(dòng)一周回到原來的位置時(shí),⊙O1自轉(zhuǎn)了2圈,而⊙O1的圓心運(yùn)動(dòng)的線路也是一個(gè)圓,而這個(gè)圓的周長恰好是⊙O1的周長的2倍.
(2)如圖2,⊙O1的半徑為r,⊙O2的半徑為R(R>r),現(xiàn)將⊙O2固定,讓,⊙O1沿⊙O2的周圍滾動(dòng),滾動(dòng)時(shí)兩圓保持相外切的位置關(guān)系.當(dāng)⊙O1沿⊙O2沿周圍滾動(dòng)一周回到原來的位置時(shí),⊙O1自轉(zhuǎn)了
R+r
r
R+r
r
圈;

(3)如圖3,⊙O1,和⊙O2內(nèi)切,⊙O1的半徑為r,⊙O2的半徑為R(R>r),現(xiàn)將⊙O2固定,讓,⊙O1沿⊙O2的邊緣滾動(dòng),動(dòng)時(shí)兩圓保持相內(nèi)切的位置關(guān)系.當(dāng)⊙O1沿⊙O2邊緣滾動(dòng)一圈回到原來的位置時(shí),⊙O1自轉(zhuǎn)了
R-r
r
R-r
r
圈.
解決問題:
如圖4,一個(gè)等邊三角形與它的一邊相切的圓的周長相等,當(dāng)此圓按箭頭方向從某一位置沿等邊三角形的三邊作無滑動(dòng)滾動(dòng),直至回到原來的位置時(shí),該圓自轉(zhuǎn)了多少圈?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,有一半徑為2的圓形紙片,從中畫出一個(gè)扇形ABC(陰影部分),且∠BAC=60°.
(1)若隨機(jī)地往圓內(nèi)投一粒米,求米粒落在陰影部分的概率;
(2)若剪下扇形ABC并用它圍成一個(gè)圓錐,求該圓錐的底面圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,頂點(diǎn)為()的拋物線交軸于點(diǎn),交軸于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),已知點(diǎn)坐標(biāo)為(,)。

(1)求此拋物線的解析式;

(2)過點(diǎn)作線段的垂線交拋物線于點(diǎn),如果以點(diǎn)為圓心的圓與直線 相切,請(qǐng)判斷拋物線的對(duì)稱軸與⊙有怎樣的位置關(guān)系,并給出證明;

(3)已知點(diǎn)是拋物線上的一個(gè)動(dòng)點(diǎn),且位于兩點(diǎn)之間,過點(diǎn)軸的平行線與交于點(diǎn)問:當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),線段的長度最大?并求出此時(shí)△的面積。

【解析】利用頂點(diǎn)為(,),點(diǎn)坐標(biāo)為(,)求出拋物線的解析式

(2)算出⊙半徑,點(diǎn)C到對(duì)稱軸的距離,即可知道位置關(guān)系

(3)求出直線AC的解析式,設(shè),知道,可求出PQ 的長度,從而求出最大值和P點(diǎn)坐標(biāo),再根據(jù)三角形的面積公式求出面積

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省無錫市中考模擬(5)數(shù)學(xué)卷(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,頂點(diǎn)為(,)的拋物線交軸于點(diǎn),交軸于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)), 已知點(diǎn)坐標(biāo)為(,)。

(1)求此拋物線的解析式;

(2)過點(diǎn)作線段的垂線交拋物線于點(diǎn), 如果以點(diǎn)為圓心的圓與直線 相切,請(qǐng)判斷拋物線的對(duì)稱軸與⊙有怎樣的位置關(guān)系,并給出證明;

(3)已知點(diǎn)是拋物線上的一個(gè)動(dòng)點(diǎn),且位于,兩點(diǎn)之間,過點(diǎn)軸的平行線與交于點(diǎn)問:當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),線段的長度最大?并求出此時(shí)△的面積。

【解析】利用頂點(diǎn)為(,),點(diǎn)坐標(biāo)為(,)求出拋物線的解析式

(2)算出⊙半徑,點(diǎn)C到對(duì)稱軸的距離,即可知道位置關(guān)系

(3)求出直線AC的解析式,設(shè),知道,可求出PQ 的長度,從而求出最大值和P點(diǎn)坐標(biāo),再根據(jù)三角形的面積公式求出面積

 

查看答案和解析>>

同步練習(xí)冊(cè)答案