分析 根據(jù)SAS可以證明△DMF≌△BNE.從而得到MF=NE,∠DFM=∠BEN.根據(jù)等角的補(bǔ)角相等,可以證明∠NEF=∠EFM,則EN∥FM.根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形即可證明.
解答 證明:在平行四邊形ABCD中,AD∥BC,
∴∠ADB=∠CBD.
在△BNE和△DMF中,$\left\{\begin{array}{l}{BN=DM}&{\;}\\{∠CBD=∠ADB}&{\;}\\{BE=DF}&{\;}\end{array}\right.$,
∴△BNE≌△DMF(SAS).
∴MF=NE,∠DFM=∠BEN,
∴∠MFE=∠NEF,
∴EN∥FM.
∴四邊形MENF是平行四邊形.
點(diǎn)評(píng) 此題綜合運(yùn)用了平行四邊形的性質(zhì)和判定、全等三角形的判定與性質(zhì).熟練掌握平行四邊形的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4$\sqrt{2}$ | C. | 6-$\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
方程 | 換元法得新方程 | 解新方程 | 檢驗(yàn) | 求原方程的解 |
2$\sqrt{x}$-3=0 | 令$\sqrt{x}$=t,則2t-3=0 | t=$\frac{3}{2}$ | t=$\frac{3}{2}>0$ | $\sqrt{x}$=$\frac{3}{2}$,所以x=$\frac{9}{4}$ |
x+2$\sqrt{x}$-3=0 | 令$\sqrt{x}$=t,則t2+2t-3=0 | t=-3或t=1 | t=-3<0,t=1>0 | $\sqrt{x}$=1,所以x=1 |
x+$\sqrt{x-2}-4=0$ | 令$\sqrt{x-2}$=t,則t2+t-2=0 | t=-2或t=1 | t=-2<0,t=1>0 | $\sqrt{x-2}$=1,所以x=3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com