在△ABC和△A′B′C′中,∠A=∠A′,CD和C′D′分別是AB和A′B′邊上的中線,再從以下三個條件:①AB=A′B′;②AC=A′C′;③CD=C′D′中任取兩個為題設,另一個為結論,則可以構成________個正確的命題.

1
分析:根據(jù)題目所給條件∠A=∠A′可得要證三角形全等必須用SAS定理,故只有如果①②那么③這一個正確命題.
解答:如果①②那么③.
∵在△ABC和△A′B′C中,
,
∴△ABC≌△A′B′C,
∴CD=C′D′.
故答案為:1.
點評:此題主要考查了全等三角形的判定與性質,關鍵是掌握全等三角形的判定定理:SSS、SAS、ASA、AAS.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、如圖,在△ABC和△DEF中,AB=DE,當
BC=EF,AC=DE
時,△ABC≌△DEF,理由是
SSS

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

16、完成下面的證明過程:
如圖,已知:AB是∠CAD的平分線,∠C=∠D.
求證:BC=BD.
證明:∵AB是∠CAD的平分線,
∴∠
1
=∠
2

在△ABC和△ABD中,
1
=∠
2
,
∠ABD=∠
ABC

AB=
AB

∴△ABC≌△ABD(ASA)
BC
=
BD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

29、如圖,在△ABC和△ADE中,AB=AD,AC=AE,∠DAC=∠BAE.
(1)請說明BC=DE;
(2)圖中還有許多相等的線段,請你再寫出兩組.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在△ABC和△A′B′C′中,∠C=∠C′,且b-a=b′-a′,b+a=b′+a′,則這兩個三角形(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

根據(jù)題意,把下列推理所依據(jù)的命題寫出來,并指出是公理還是定理.
(1)如圖所示,若∠1=∠2,則a∥b;
(2)在△ABC和△A′B′C′中,AB=A′B′,AC=A′C′,∠A=∠A′,則△ABC≌△A′B′C′;
(3)如果a=b,b=c,那么a=c.

查看答案和解析>>

同步練習冊答案