精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC中,BC=5cm,BP、CP分別是∠ABC和∠ACB的角平分線,且PD∥AB,PE∥AC,則△PDE的周長是cm.

【答案】5
【解析】解:∵BP、CP分別是∠ABC和∠ACB的角平分線, ∴∠ABP=∠PBD,∠ACP=∠PCE,
∵PD∥AB,PE∥AC,
∴∠ABP=∠BPD,∠ACP=∠CPE,
∴∠PBD=∠BPD,∠PCE=∠CPE,
∴BD=PD,CE=PE,
∴△PDE的周長=PD+DE+PE=BD+DE+EC=BC=5cm.
故答案為:5.
分別利用角平分線的性質和平行線的判定,求得△DBP和△ECP為等腰三角形,由等腰三角形的性質得BD=PD,CE=PE,那么△PDE的周長就轉化為BC邊的長,即為5cm.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,點C沿著某條路徑運動,以點C為旋轉中心,將點A(0,4)逆時針方向旋轉60°,到點B(m,1).若-5≤m≤5,則點C的運動路徑長為___________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=∠90°,D為AB邊上一點.
(1)求證:△ACE≌△BCD;
(2)若AD=6,BD=8,求ED的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列計算正確的是(
A.(x32=x6
B.(﹣2x32=4x5
C.x4x4=2x4
D.x5÷x=x5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知實數m,n滿足m﹣n2=1,則代數式m2+2n2+4m﹣1的最小值等于

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某高校學生會在食堂發(fā)現(xiàn)同學們就餐時剩余飯菜較多,浪費嚴重,為了讓同學們珍惜糧食,養(yǎng)成節(jié)約的好習慣,校學生會隨機抽查了午餐后部分同學飯菜的剩余情況,并將結果統(tǒng)計后繪制成了如圖所示的不完整的統(tǒng)計圖.

(1)這次被調查的同學共有  名.

(2)把條形統(tǒng)計圖補充完整.

(3)校學生會通過數據分析,估計這次被調查的所有學生一餐浪費的食物可以供200人用一餐.據此估算,該校18000名學生一餐浪費的食物可供多少人食用一餐?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知在Rt△ABC中,∠ABC=90°,點D沿BC自B向C運動點D與點B、C不重合,作BE⊥AD于E,CF⊥AD于F,則BE+CF的值

A.不變 B.增大 C.減小 D.先變大再變小

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】解方程:2x-3(2x-3)=x+4;

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/s的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/s的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.

(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值,如果不能,說明理由;
(3)當t為何值時,△DEF為直角三角形?請說明理由.

查看答案和解析>>

同步練習冊答案