【題目】如圖,∠AGF=∠ABC,∠1+∠2=180°,
(1)求證;BF∥DE.
(2)如果DE垂直于AC,∠2=150°,求∠AFG的度數.
【答案】
(1)證明:∵∠AGF=∠ABC,
∴BC∥GF,
∴∠AFG=∠C.
∵∠1+∠2=180°,∠CDE+∠2=180°,
∴∠1=∠CDE.
∵∠CED=180°﹣∠C﹣∠CDE,∠CFB=180°﹣∠AFD﹣∠1,
∴∠CED=∠CFB,
∴BF∥DE
(2)解:∵DE⊥AC,BF∥DE,
∴∠AFB=∠AED=90°,
∵∠1+∠2=180°,∠2=150°,
∴∠1=30°.
∵∠AFB=∠AFG+∠1=90°,
∴∠AFB=60°
【解析】(1)根據∠AGF=∠ABC可得出BC∥GF,進而可得出∠AFG=∠C,再根據角的計算可得出∠1=∠CDE,由此即可得出∠CED=∠CFB,根據“同位角相等,兩直線平行”即可得出BF∥DE;(2)根據DE⊥AC、BF∥DE即可得出∠AFB=90°,再結合∠1+∠2=180°、∠2=150°以及∠AFB=∠AFG+∠1即可算出∠AFB的度數.
【考點精析】本題主要考查了平行線的判定與性質的相關知識點,需要掌握由角的相等或互補(數量關系)的條件,得到兩條直線平行(位置關系)這是平行線的判定;由平行線(位置關系)得到有關角相等或互補(數量關系)的結論是平行線的性質才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】小紅設計了如圖所示的一個計算程序:
根據這個程序解答下列問題:
(1)若小剛輸入的數為﹣4,則輸出結果為 ,
(2)若小紅的輸出結果為123,則她輸入的數為 ,
(3)這個計算程序可列出算式為 , 計算結果為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 在△ABC中,∠A=40°.
(1)如圖(1)BO、CO是△ABC的內角角平分線,且相交于點O,求∠BOC;
(2)如圖(2)若BO、CO是△ABC的外角角平分線,且相交于點O,求∠BOC;
(3)如圖(3)若BO、CO分別是△ABC的一內角和一外角角平分線,且相交于點O,求∠BOC;
(4)根據上述三問的結果,當∠A=n°時,分別可以得出∠BOC與∠A有怎樣的數量關系(只需寫出結論).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,∠XOY=90°,點A、B分別在射線OX、OY上移動,BE是∠ABY的平分線,BE的反向延長線與∠OAB的平分線相交于點C,試問∠ACB的大小是否發(fā)生變化?如果保持不變,請給出證明;如果隨點A、B移動發(fā)生變化,請求出變化范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】九年級(1)班的全體同學,在新年來臨之際,在賀卡上寫上自己的心愿和祝福贈送給其他同學各一張,全班共互贈了5112張,設全班有x名同學,那么根據題意列出的方程是( )
A.x(x+1)=5112
B.x(x﹣1)=5112
C.x(x+1)=5112×2
D.x(x﹣1)=5112×2
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com