已知二次函數(shù).

(1)當(dāng)二次函數(shù)的圖象經(jīng)過坐標(biāo)原點O(0,0)時,求二次函數(shù)的解析式;
(2)如圖,當(dāng)m=2時,該拋物線與y軸交于點C,頂點為D,求C、D兩點的坐標(biāo);
(3)在(2)的條件下,x軸上是否存在一點P,使得PC+PD最短?若P點存在,求出P點的坐標(biāo);若P點不存在,請說明理由。
解:(1)∵二次函數(shù)的圖象經(jīng)過坐標(biāo)原點O(0,0),
∴代入得:,解得:m=±1。
∴二次函數(shù)的解析式為:
(2)∵m=2,∴二次函數(shù)為:。
∴拋物線的頂點為:D(2,-1)。
當(dāng)x=0時,y=3,
∴C點坐標(biāo)為:(0,3)。
(3)存在,當(dāng)P、C、D共線時PC+PD最短。
過點D作DE⊥y軸于點E,

∵PO∥DE,∴△COP∽△CED。
,即,解得:
∴PC+PD最短時,P點的坐標(biāo)為:P(,0)。

試題分析:(1)根據(jù)二次函數(shù)的圖象經(jīng)過坐標(biāo)原點O(0,0),直接代入求出m的值即可。
(2)把m=2,代入求出二次函數(shù)解析式,利用配方法求出頂點坐標(biāo)以及圖象與y軸交點即可。
(3)根據(jù)兩點之間線段最短的性質(zhì),當(dāng)P、C、D共線時PC+PD最短,利用相似三角形的判定和性質(zhì)得出PO的長即可得出答案。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與直線交于C,D兩點,其中點C在y軸上,點D的坐標(biāo)為。點P是y軸右側(cè)的拋物線上一動點,過點P作軸于點E,交CD于點F.

(1)求拋物線的解析式;
(2)若點P的橫坐標(biāo)為m,當(dāng)m為何值時,以O(shè),C,P,F(xiàn)為頂點的四邊形是平行四邊形?請說明理由。
(3)若存在點P,使,請直接寫出相應(yīng)的點P的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在等邊△ABC中,AB=3,D、E分別是AB、AC上的點,且DE∥BC,將△ADE沿DE翻折,與梯形BCED重疊的部分記作圖形L.

(1)求△ABC的面積;
(2)設(shè)AD=x,圖形L的面積為y,求y關(guān)于x的函數(shù)解析式;
(3)已知圖形L的頂點均在⊙O上,當(dāng)圖形L的面積最大時,求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知拋物線y=ax2+bx(a≠0)經(jīng)過A(3,0)、B(4,4)兩點.

(1)求拋物線的解析式;
(2)將直線OB向下平移m個單位長度后,得到的直線與拋物線只有一個公共點D,求m的值及點D的坐標(biāo);
(3)如圖2,若點N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,求出所有滿足△POD∽△NOB的點P坐標(biāo)(點P、O、D分別與點N、O、B對應(yīng)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的頂點坐標(biāo)是【   】
A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線y=2x2的對稱軸為               

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知拋物線的對稱軸為,點A,B均在拋物線上,且與x軸平行,其中點的坐標(biāo)為(n,3),則點的坐標(biāo)為(    ).
A.(n+2,3)B.(,3)C.(,3)D.(,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將拋物線向左平移2個單位,再向下平移1個單位,所得拋物線為
A. B.
C.  D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若二次函數(shù) (a≠0)的圖象與x軸有兩個交點,坐標(biāo)分別為(x1,0),(x2,0),且x1<x2,圖象上有一點M (x0,y0)在x軸下方,則下列判斷正確的是
A.a(chǎn)>0B.b2-4ac≥0
C.x1<x0<x2D.a(chǎn)(x0-x1)( x0-x2)<0

查看答案和解析>>

同步練習(xí)冊答案