【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,∠ABC=2∠D,連接OA、OB、OC、AC,OB與AC相交于點(diǎn)E,若∠COB=3∠AOB,OC=2,則圖中陰影部分面積是_____(結(jié)果保留π和根號(hào))

【答案】3π﹣2

【解析】∵四邊形ABCD是⊙O的內(nèi)接四邊形,

∴∠ABC+∠D=180°,

∵∠ABC=2D,

∴∠D+2D=180°,

∴∠D=60°,

∴∠AOC=2D=120°,

OA=OC,

∴∠OAC=OCA=30°;

∵∠COB=3AOB,

∴∠AOC=AOB+3AOB=120°,

∴∠AOB=30°,

∴∠COB=AOC﹣AOB=90°,

RtOCE中,OC=2,

OE=OCtanOCE=2tan30°=2×=2,

SOEC=OEOC=×2×2=2,

S扇形OBC==3π,

S陰影=S扇形OBC﹣SOEC=3π﹣2

故答案為:3π﹣2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l1的解析表達(dá)式為y=- x-1,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過(guò)定點(diǎn)A(2,0),B(-1,3),直線l1與l2交于點(diǎn)C.

(1)求直線l2的函數(shù)關(guān)系式;
(2)求△ADC的面積;
(3)在直線l2上存在異于點(diǎn)C的另一點(diǎn)P,使得△ADP與△ADC的面積相等,請(qǐng)寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在平面直角坐標(biāo)系xOy中,反比例函數(shù)y1 (x>0)的圖象與一次函數(shù)y2=kx-k的圖象的交點(diǎn)為A(m,2).

(1)求一次函數(shù)的解析式;
(2)觀察圖像,直接寫出使y1≥y2的x的取值范圍.
(3)設(shè)一次函數(shù)y=kx-k的圖象與y軸交于點(diǎn)B,若點(diǎn)P是x軸上一點(diǎn),且滿足△PAB的面積是4,請(qǐng)寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)Pxy)在第二象限,且到x軸的距離是2,到y軸的距離是3,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某校學(xué)生對(duì)《最強(qiáng)大腦》、《朗讀者》、《中國(guó)詩(shī)詞大會(huì)》、《出彩中國(guó)人》四個(gè)電視節(jié)目的喜愛情況,隨機(jī)抽取了x名學(xué)生進(jìn)行調(diào)查統(tǒng)計(jì)(要求每名學(xué)生選出并且只能選出一個(gè)自己最喜愛的節(jié)目),并將調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖表:則 a=___.

學(xué)生最喜愛的節(jié)目

人數(shù)(名)

百分比

最強(qiáng)大腦

5

10%

朗讀者

15

b%

中國(guó)詩(shī)詞大會(huì)

a

40%

出彩中國(guó)人

10

20%

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列圖形中,不具有穩(wěn)定性的圖形是( )

A. 平行四邊形 B. 等腰三角形 C. 直角三角形 D. 等邊三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年春節(jié)放假期間,夫子廟游客總數(shù)達(dá)到1800000人,將1800000用科學(xué)記數(shù)法表示為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明利用周末去做社會(huì)調(diào)查,了解美的空調(diào)的質(zhì)量情況.他設(shè)計(jì)的問(wèn)題是:你覺得美的空調(diào)好嗎?你對(duì)他設(shè)計(jì)的問(wèn)題有何看法,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l:y=x﹣ 與x軸正半軸、y軸負(fù)半軸分別相交于A、C兩點(diǎn),拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)B(﹣1,0)和點(diǎn)C.

(1)填空:直接寫出拋物線的解析式:_____;

(2)已知點(diǎn)Q是拋物線y=x2+bx+c在第四象限內(nèi)的一個(gè)動(dòng)點(diǎn).

①如圖,連接AQ、CQ,設(shè)點(diǎn)Q的橫坐標(biāo)為t,△AQC的面積為S,求S與t的函數(shù)關(guān)系式,并求出S的最大值;

②連接BQ交AC于點(diǎn)D,連接BC,以BD為直徑作⊙I,分別交BC、AB于點(diǎn)E、F,連接EF,求線段EF的最小值,并直接寫出此時(shí)Q點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案