(1999•遼寧)如圖,PA、PB分別切⊙O于A、B.PA=5,在劣弧上取點(diǎn)C,過C作⊙O的切線,分別交PA,PB于D,E,則△PDE的周長(zhǎng)等于   
【答案】分析:由于PA、PB、DE都是⊙O的切線,可根據(jù)切線長(zhǎng)定理將△PDE的周長(zhǎng)轉(zhuǎn)化為切線PA、PB的長(zhǎng).
解答:解:∵PA、PB、DE分別切⊙O于A、B、C,
∴PA=PB,DA=DC,EC=EB;
∴C△PDE=PD+DE+PE=PD+DA+EB+PE=PA+PB=10;
故△PDE的周長(zhǎng)為10.
點(diǎn)評(píng):此題主要考查的是切線長(zhǎng)定理,能夠發(fā)現(xiàn)△PDE的周長(zhǎng)和切線PA、PB長(zhǎng)的關(guān)系是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:1999年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(02)(解析版) 題型:解答題

(1999•遼寧)如圖,⊙O1和⊙O2內(nèi)切于點(diǎn)A,⊙O2的弦BC切⊙O1于D.AD的延長(zhǎng)線交⊙O2于M,連接AB、AC分別交⊙O1于E、F,連接EF.
(1)求證:EF∥BC;
(2)求證:AB•AC=AD•AM;
(3)若⊙O1的半徑r1=3,⊙O2的半徑r2=8,BC是⊙O2的直徑,求AB和AC的長(zhǎng)(AB>AC).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年全國(guó)中考數(shù)學(xué)試題匯編《圓》(06)(解析版) 題型:解答題

(1999•遼寧)如圖,⊙O1和⊙O2內(nèi)切于點(diǎn)A,⊙O2的弦BC切⊙O1于D.AD的延長(zhǎng)線交⊙O2于M,連接AB、AC分別交⊙O1于E、F,連接EF.
(1)求證:EF∥BC;
(2)求證:AB•AC=AD•AM;
(3)若⊙O1的半徑r1=3,⊙O2的半徑r2=8,BC是⊙O2的直徑,求AB和AC的長(zhǎng)(AB>AC).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年全國(guó)中考數(shù)學(xué)試題匯編《圓》(04)(解析版) 題型:填空題

(1999•遼寧)如圖,PA、PB分別切⊙O于A、B.PA=5,在劣弧上取點(diǎn)C,過C作⊙O的切線,分別交PA,PB于D,E,則△PDE的周長(zhǎng)等于   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

(1999•遼寧)如圖,拋物線y=ax2-3x+c交x軸正方向于A、B兩點(diǎn),交y軸正方向于C點(diǎn),過A、B、C三點(diǎn)作⊙D.若⊙D與y軸相切.
(1)求a、c滿足的關(guān)系式;
(2)設(shè)∠ACB=a,求tana;
(3)設(shè)拋物線頂點(diǎn)為P,判斷直線PA與⊙D的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年全國(guó)中考數(shù)學(xué)試題匯編《分式方程》(01)(解析版) 題型:解答題

(1999•遼寧)如圖,某縣為加固長(zhǎng)90米,高5米,壩頂寬為4米,迎水坡和背水坡的坡度都是1:1的橫斷面是梯形的防洪大壩.要將大壩加高1米,背水坡坡度改為1:1.5.已知壩頂寬不變.
(1)求大壩橫截面面積增加多少平方米?
(2)要在規(guī)定時(shí)間內(nèi)完成此項(xiàng)工程.如果甲隊(duì)單獨(dú)做將拖延10天完成,乙隊(duì)單獨(dú)做將拖延6天完成.現(xiàn)在甲隊(duì)單獨(dú)工作2天后,乙隊(duì)加入一起工作,結(jié)果提前4天完成.求原來規(guī)定多少天完成和每天完成的土方數(shù)?

查看答案和解析>>

同步練習(xí)冊(cè)答案