當(dāng)a=-2, b=-1, c=3時(shí)5abc-{2a2b-[3abc-(4ab2-a2b)]}的值為_______

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué) 三點(diǎn)一測(cè)叢書 八年級(jí)數(shù)學(xué) 下 (江蘇版課標(biāo)本) 江蘇版 題型:044

函數(shù)的奇偶性

  一般地,如果函數(shù)y=f(x)對(duì)于自變量取值范圍內(nèi)的任意x,都有f(-x)=-f(x)f那么y=f(x)就叫做奇函數(shù);如果函數(shù)y=f(x)對(duì)于自變量取值范圍內(nèi)的任意x,都有f(-x)=f(x),那么y=f(x)就叫做偶函數(shù).

  例如:f(x)=x3+x.

  當(dāng)x取任意實(shí)數(shù),

  f(-x)=(-x)3+(-x)=-x3-x=-(x3+x)

  即f(-x)=-f(x)

  所以f(x)=x3+x為奇函數(shù).

  又如:f(x)=|x|,

  當(dāng)x取任意實(shí)數(shù)時(shí),f(-x)=|-x|=|x|=f(x),

  即f(-x)=f(x)

  所以f(x)為偶函數(shù).

問題:(1)下列函數(shù):

①y=x4;②y=x2+1;③y=;④y=;⑤y=x+

所有奇函數(shù)是________,所有偶函數(shù)是________(只填序號(hào));

(2)請(qǐng)你再分別寫出一個(gè)奇函數(shù),一個(gè)偶函數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

數(shù)學(xué)課堂上,徐老師出示一道試題:如圖(十)所示,在正三角形ABC中,MBC邊(不含端點(diǎn)B、C)上任意一點(diǎn),PBC延長(zhǎng)線上一點(diǎn),N是∠ACP的平分線上一點(diǎn).若∠AMN=60°,求證:AMMN

    

(1)經(jīng)過思考,小明展示了一種正確的證明過程.請(qǐng)你將證明過程補(bǔ)充完整.

證明:在AB上截取EAMC,連結(jié)EM,得△AEM

∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.

CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①

又∵BABCEAMC,∴BAEABCMC,即BEBM

∴△BEM為等邊三角形.∴∠6=60°.

∴∠5=180°-∠6=120°.………②

∴由①②得∠MCN=∠5.

在△AEM和△MCN中,

∵_(dá)_______________________________

∴△AEM≌△MCN (ASA).∴AMMN

(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點(diǎn),則當(dāng)∠A1M1N1=90°時(shí),結(jié)論A1M1M1N1.是否還成立?(直接寫出答案,不需要證明)

(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDnXn”,請(qǐng)你猜想:當(dāng)∠AnMnNn    °時(shí),結(jié)論AnMnMnNn仍然成立?(直接寫出答案,不需要證明)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在△ABC中AB=AC,點(diǎn)D為BC邊的中點(diǎn),點(diǎn)F是AB邊上一點(diǎn),點(diǎn)E在線段DF的延長(zhǎng)線上,∠BAE=∠BDF,點(diǎn)M在線段DF上,∠ABE=∠DBM.
【小題1】如圖1,當(dāng)∠ABC=45°時(shí),求證:AE=MD;

【小題2】如圖2,當(dāng)∠ABC=60°時(shí),則線段AE、MD之間的數(shù)量關(guān)系為:                。

【小題3】在(2)的條件下延長(zhǎng)BM到P,使MP=BM,連接CP,若AB=7,AE=,求tan∠ACP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

數(shù)學(xué)課堂上,徐老師出示一道試題:
如圖(十)所示,在正三角形ABC中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長(zhǎng)線上一點(diǎn),N是∠ACP的平分線上一點(diǎn).若∠AMN=60°,求證:AM=MN.
(1)經(jīng)過思考,小明展示了一種正確的證明過程.請(qǐng)你將證明過程補(bǔ)充完整.
證明:在AB上截取EA=MC,連結(jié)EM,得△AEM.
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.
又CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①
又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.
∴△BEM為等邊三角形.∴∠6=60°.
∴∠5=180°-∠6=120°.………②
∴由①②得∠MCN=∠5.
在△AEM和△MCN中,
                                            
∴△AEM≌△MCN (ASA).∴AM=MN.
(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點(diǎn),則當(dāng)∠A1M1N1=90°時(shí),結(jié)論A1M1=M1N1.是否還成立?(直接寫出答案,不需要證明)
(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDn…Xn”,請(qǐng)你猜想:當(dāng)∠AnMnNn   °時(shí),結(jié)論AnMn=MnNn仍然成立?(直接寫出答案,不需要證明)
    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(山東泰安卷)數(shù)學(xué)解析版 題型:解答題

數(shù)學(xué)課堂上,徐老師出示一道試題:如圖(十)所示,在正三角形ABC中,MBC邊(不含端點(diǎn)BC)上任意一點(diǎn),PBC延長(zhǎng)線上一點(diǎn),N是∠ACP的平分線上一點(diǎn).若∠AMN=60°,求證:AMMN

    

(1)經(jīng)過思考,小明展示了一種正確的證明過程.請(qǐng)你將證明過程補(bǔ)充完整.

證明:在AB上截取EAMC,連結(jié)EM,得△AEM

∵∠1=180°-∠AMB-∠AMN,2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.

CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①

又∵BABC,EAMC,∴BAEABCMC,即BEBM

∴△BEM為等邊三角形.∴∠6=60°.

∴∠5=180°-∠6=120°.………②

∴由①②得∠MCN=∠5.

在△AEM和△MCN中,

∵_(dá)_______________________________

∴△AEM≌△MCN (ASA).∴AMMN

(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點(diǎn),則當(dāng)∠A1M1N1=90°時(shí),結(jié)論A1M1M1N1.是否還成立?(直接寫出答案,不需要證明)

(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDnXn”,請(qǐng)你猜想:當(dāng)∠AnMnNn    °時(shí),結(jié)論AnMnMnNn仍然成立?(直接寫出答案,不需要證明)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案