(1)如圖1,點(diǎn)E、F在AC上,AB∥CD,AB=CD,AE=CF,求證:△ABF≌△CDE
(2)如圖2,方格紙中的每個(gè)小方格是邊長為1個(gè)單位長度的正方形.
①畫出將Rt△ABC向右平移5個(gè)單位長度后的Rt△A1B1C1
②再將Rt△A1B1C1繞點(diǎn)C1順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的Rt△A2B2C2,并求出旋轉(zhuǎn)過程中線段A1C1所掃過的面積(結(jié)果保留π)

(1)證明:∵AB∥CD
∴∠A=∠C.
∵AE=CF
∴AE+EF=CF+EF,即AF=CE
∵AB=CD

∴△ABF≌CDE(SAS).

(2)解:①如圖所示;
②如圖所示:在旋轉(zhuǎn)過程中,線段A1C1所掃過的面積等于=4π.
分析:(1)由AB∥CD可知∠A=∠C,再根據(jù)AE=CF可得出AF=CE,由AB=CD即可判斷出△ABF≌CDE;
(2)根據(jù)圖形平移的性質(zhì)畫出平移后的圖形,再根據(jù)在旋轉(zhuǎn)過程中,線段A1C1所掃過的面積等于以點(diǎn)C1為圓心,以A1C1為半徑,圓心角為90度的扇形的面積,再根據(jù)扇形的面積公式進(jìn)行解答即可.
點(diǎn)評(píng):本題考查的是作圖-旋轉(zhuǎn)變換、全等三角形的判定及扇形面積的計(jì)算,熟知圖形平移及旋轉(zhuǎn)不變性的性質(zhì)是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

2、若二次函數(shù)y=ax2+bx+c的圖象如圖,則點(diǎn)(a+b,ac)在( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•松江區(qū)模擬)已知:點(diǎn)A、B都在半徑為9的圓O上,P是射線OA上一點(diǎn),以PB為半徑的圓P與圓O相交的另一個(gè)交點(diǎn)為C,直線OB與圓P相交的另一個(gè)交點(diǎn)為D,cos∠AOB=
23

(1)求:公共弦BC的長度;
(2)如圖,當(dāng)點(diǎn)D在線段OB的延長線上時(shí),設(shè)AP=x,BD=y,求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;
(3)如果直線PD與射線CB相交于點(diǎn)E,且△BDE與△BPE相似,求線段AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南通)如圖,經(jīng)過點(diǎn)A(0,-4)的拋物線y=
1
2
x2+bx+c與x軸相交于B(-2,0),C兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求拋物線的解析式;
(2)將拋物線y=
1
2
x2+bx+c向上平移
7
2
個(gè)單位長度,再向左平移m(m>0)個(gè)單位長度得到新拋物線,若新拋物線的頂點(diǎn)P在△ABC內(nèi),求m的取值范圍;
(3)設(shè)點(diǎn)M在y軸上,∠OMB+∠OAB=∠ACB,求AM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直線l1、l2經(jīng)過K(2,2)
(1)如圖1,直線l2⊥l1于K.直線l1分別交x軸、y軸于A點(diǎn)、B點(diǎn),直線l2,分別交x軸、y軸于C、D,求OB+OC的值;
(2)在第(1)問的條件下,求S△ACK-S△OCD的值:
(3)在第(2)問的條件下,如圖2,點(diǎn)J為AK上任一點(diǎn)(J不于點(diǎn)A、K重合),過A作AE⊥DJ于E,連接EK,求∠DEK的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖1,這是一個(gè)五角星ABCDE,你能計(jì)算出∠A+∠B+∠C+∠D+∠E的度數(shù)嗎?為什么?(必須寫推理過程) 
(2)如圖2,如果點(diǎn)B向右移動(dòng)到AC上,那么還能求出∠A+∠DBE+∠C+∠D+∠E的大小嗎?若能結(jié)果是多少?(可不寫推理過程)
(3)如圖,當(dāng)點(diǎn)B向右移動(dòng)到AC的另一側(cè)時(shí),上面的結(jié)論還成立嗎?
(4)如圖4,當(dāng)點(diǎn)B、E移動(dòng)到∠CAD的內(nèi)部時(shí),結(jié)論又如何?根據(jù)圖3或圖4,說明你計(jì)算的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案