【答案】
分析:(1)可根據(jù)點(diǎn)B,C的坐標(biāo),用待定系數(shù)法來求出直線BC的解析式;
(2)可先計(jì)算出梯形面積的
,也就求出了四邊形COPD的面積.有OC的長,D是BC的中點(diǎn),如果過D作梯形的中位線,可求出三角形OCD中,OC邊上的高應(yīng)該是4,由此可求出三角形OCD的面積,也就能表示出OPD的面積,然后再用OP的值表示出三角形OPD的面積,得出關(guān)于t的方程,即可求出此時(shí)t的值;
(3)本題要分三種情況進(jìn)行討論:
①當(dāng)P在OA上時(shí),即0<t<8時(shí),如果過D作OA的垂線DE,垂直為E,那么DE就是梯形的中位線,即DE=7,要表示三角形OPD的面積,還需知道OP的長,可以根據(jù)P點(diǎn)的速度,用時(shí)間t表示出OP,這樣可根據(jù)三角形的面積公式求出關(guān)于S,t的函數(shù)關(guān)系式.
②當(dāng)P在AB上時(shí),即8≤t<18時(shí),三角形OPD的面積可以用四邊形OAPD的面積-三角形OAP的面積來表示,而四邊形OAPD的面積可分成梯形DEAP和三角形OED兩部分來求,而OE,AE,DE,AB都是定值,因此可求出四邊形OAPD的面積,三角形OAP中,可用t表示出AP的長,進(jìn)而可用t表示出三角形OAP的面積,然后根據(jù)三角形OPD的面積S=四邊形OAPD的面積-三角形OAP的面積,即可得出關(guān)于S,t的函數(shù)關(guān)系式;
③當(dāng)P在BD上時(shí),即18<t<23時(shí),三角形OPD的面積可用三角形OCP的面積-三角形OCD的面積來求,三角形OPC中,可過P作OC的垂線PH,可根據(jù)AB∥OC,得出∠BCH的正弦值,然后用t表示出CP,那么在直角三角形OPH中可以求出OC邊上的高PH的表達(dá)式,那么就能表示出三角形OPC的面積,三角形OCD中,OC的值已知,而OC邊上的高就是OE,那么也可求出三角形OCD的面積,然后可根據(jù)三角形OPD的面積=三角形OPC的面積-三角形OCD的面積來求出關(guān)于S,t的函數(shù)關(guān)系式;
(4)先假設(shè)存在這樣的點(diǎn)P,那么四邊形CQPD是矩形,可得出CD=QP=BD=5,∠QPD=∠PDC=90°,要求此時(shí)t的值,首先就要求出AP的長,根據(jù)∠QPD=∠BDP=∠QAP=90°,不難得出三角形AQP與三角形DPB相似,那么可得出關(guān)于BD,BP,AP,QP的比例關(guān)系,而BD,QP的長已求出,AP+PB=AB=10,因此可求出此時(shí)AP,PB的長,然后判定一下此時(shí)四邊形QPDC是矩形的結(jié)論是否成立,如果成立可根據(jù)AP的長求出t的長.
解答:解:(1)設(shè)BC所在直線的解析式為y=kx+b,
因?yàn)橹本BC過B(8,10),C(0,4)兩點(diǎn),可得:
,
解得k=
,b=4,
因此BC所在直線的解析式是y=
x+4;
(2)過D作DE⊥OA,
則DE為梯形OABC的中位線,OC=4,AB=10,
則DE=7,又OA=8,得S
梯形OABC=56,
則四邊形OPDC的面積為16,S
△COD=8,
∴S
△POD=8,
即
•t×7=8,
得t=
;
(3)分三種情況
①0<t≤8,(P在OA上)
S
三角形OPD=
t
②8<t≤18,(P在AB上)
S
三角形OPD=S
梯形OCBA-S
三角形OCD-S
三角形OAP-S
三角形PBD=56-8-4(t-8)-2(18-t)=44-2t
(此時(shí)AP=t-8,BP=18-t)
③過D點(diǎn)作DM垂直y軸與M點(diǎn)
∴CM=3,DM=4,CD=5,
∴∠BCH的正弦值為
CP長為28-t
∴PH=22.4-0.8t
S
三角形OPD=S
三角形OPC-S
三角形ODC=
×4(22.4-0.8t)-8
=
-
t;
(4)不能.理由如下:作CM⊥AB交AB于M,
則CM=OA=8,AM=OC=4,
∴MB=6.
∴在Rt△BCM中,BC=10,
∴CD=5,
若四邊形CQPD為矩形,則PQ=CD=5,
且PQ∥CD,
∴Rt△PAQ∽R(shí)t△BDP,
設(shè)BP=x,則PA=10-x,
∴
,
化簡(jiǎn)得x
2-10x+25=0,x=5,即PB=5,
∴PB=BD,這與△PBD是直角三角形不相符因此四邊形CQPD不可能是矩形.
點(diǎn)評(píng):本題主要考查了梯形的性質(zhì),矩形的判定,相似三角形的判定和性質(zhì)以及一次函數(shù)的綜合應(yīng)用,要注意的是(3)中,要根據(jù)P點(diǎn)的不同位置進(jìn)行分類求解.