【題目】在云南大理坐落著美麗的大理三塔.?dāng)?shù)學(xué)活動(dòng)小組開(kāi)展課外實(shí)踐活動(dòng),在一個(gè)陽(yáng)光明媚的上午,他們?nèi)y(cè)量三塔中一塔的高度,攜帶的測(cè)量工具有:測(cè)角儀.皮尺.小鏡子.

1)小華利用測(cè)角儀和皮尺測(cè)量塔高. 圖1為小華測(cè)量塔高的示意圖.她先在塔前的平地上選擇一點(diǎn),用測(cè)角儀測(cè)出看塔頂的仰角,在點(diǎn)和塔之間選擇一點(diǎn),測(cè)出看塔頂的仰角,然后用皮尺量出兩點(diǎn)的距離為m,自身的高度為m.請(qǐng)你利用上述數(shù)據(jù)幫助小華計(jì)算出塔的高度(,結(jié)果保留整數(shù)).

2)如果你是活動(dòng)小組的一員,正準(zhǔn)備測(cè)量塔高,而此時(shí)塔影的長(zhǎng)為m(如圖2,你能否利用這一數(shù)據(jù)設(shè)計(jì)一個(gè)測(cè)量方案?如果能,

請(qǐng)回答下列問(wèn)題:

在你設(shè)計(jì)的測(cè)量方案中,選用的測(cè)量工具是: ;

要計(jì)算出塔的高,你還需要測(cè)量哪些數(shù)據(jù)?

【答案】1)高度為45m;(2)①測(cè)角儀、皮尺;②站在P點(diǎn)看塔頂?shù)难鼋、自身的高度?/span>

【解析】

(1)通過(guò)解直角三角形即可計(jì)算出塔的高度;

(2)可根據(jù)身高和影長(zhǎng)成正比選用合適的工具測(cè)出適當(dāng)?shù)臄?shù)據(jù)即可.

解:(1)設(shè)CD的延長(zhǎng)線(xiàn)交MNE點(diǎn),MN長(zhǎng)為x
ME=x-1.6
β=45°,
tanβ=MEEB=1,
DE=ME
DE=ME=x-1.6
CE=x-1.6+18.6=x+17

解得x=45
∴塔(MN)的高度為45m

(2)(答案不唯一)皮尺; ②自己的身高和影長(zhǎng)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在等腰中,為中線(xiàn),將線(xiàn)段繞點(diǎn)逆時(shí)針旋轉(zhuǎn);得到線(xiàn)段連接交直線(xiàn)于點(diǎn),連接

1)若,則 ;

2)若是鈍角時(shí),

①請(qǐng)?jiān)趫D2中依題意補(bǔ)全圖形,并標(biāo)出對(duì)應(yīng)字母;

②探究圖2的形狀,并說(shuō)明理由;

③若

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】同一個(gè)圓的內(nèi)接正方形和正三角形的邊心距的比為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,BPC是等邊三角形,BP、CP的延長(zhǎng)線(xiàn)分別交AD于點(diǎn)EF,連結(jié)BD、DP,BDCF相交于點(diǎn)H.給出下列結(jié)論:

①△ABE≌△DCF;PDF=15°;,其中正確的結(jié)論有(  

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+ca0)的部分圖象如圖所示,圖象過(guò)點(diǎn)(﹣10),對(duì)稱(chēng)軸為直線(xiàn)x=2,下列結(jié)論:(14a+b=0;(28a+7b+2c0;(3)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C,y3)在該函數(shù)圖象上,則y1y3y2;(4)若方程ax+1)(x5=3的兩根為x1x2,且x1x2,則x1<﹣15x2.其中正確的結(jié)論有().

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種蔬菜的銷(xiāo)售單價(jià)y1與銷(xiāo)售月份x之間的關(guān)系如圖1所示,成本y2與銷(xiāo)售月份x之間的關(guān)系如圖2所示.

(1)已知6月份這種蔬菜的成本最低,此時(shí)出售每干克的收益是多少元?(收益=售價(jià)-成本)

(2)分別求出y1y2x之間的函數(shù)關(guān)系式;

(3)哪個(gè)月出售這種蔬菜,每千克的收益最大?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,點(diǎn)AC邊中點(diǎn),動(dòng)點(diǎn)從點(diǎn)出發(fā),沿著的路徑以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng)到點(diǎn),在此過(guò)程中線(xiàn)段的長(zhǎng)度隨著運(yùn)動(dòng)時(shí)間變化的函數(shù)關(guān)系如圖2所示,則邊的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某建筑物上掛著“巴山渝水,魅力重慶”的宣傳條幅,王同學(xué)利用測(cè)傾器在斜坡的底部處測(cè)得條幅底部的仰角為60°,沿斜坡AB走到B處測(cè)得條幅頂部C的仰角為50°.已知斜坡的坡度米,米(點(diǎn)在同平面內(nèi),,測(cè)傾器的高度忽略不計(jì)),則條幅的長(zhǎng)度約為(參考數(shù)據(jù):

A.12.5B.12.8C.13.1D.13.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtΔABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙OAC于點(diǎn)D,點(diǎn)EAB邊上一點(diǎn)(點(diǎn)E不與點(diǎn)A、B重合),DE的延長(zhǎng)線(xiàn)交⊙O于點(diǎn)G,DFDG,且交BC于點(diǎn)F.

(1)求證:AE=BF;

(2)連接EF,求證:∠FEB=∠GDA;

(3)連接GF,AE=2,EB=4,求ΔGFD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案