如圖,已知:在△ABC中,AB=AC,BE=CD,∠B=70°,BD=CF.求:∠EDF的度數(shù).

解:∵BD=CF,BE=CD,∠B=∠C=70°,
∴△BDE≌△CFD,∴∠BDE=∠CFD,
∠EDF=180°-(∠BDE+∠CDF)=180°-(∠CFD+∠CDF)=180°-(180°-∠C)=70°,
∴∠EDF=70°.
分析:由題中條件可得△BDE≌△CFD,即∠BDE=∠CFD,∠EDF可由180°與∠BDE、∠CDF的差表示,進而求解即可.
點評:本題主要考查了全等三角形的判定及性質問題,能夠熟練掌握.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD嗎?為什么?精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知:在Rt△ABC中,∠C=90°,E為AB的中點,且DE⊥AB于E,若∠CAD:∠DAB=1﹕2,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知M在AB上,BC=BD,MC=MD.請說明:AC=AD.

查看答案和解析>>

科目:初中數(shù)學 來源:同步題 題型:解答題

如圖,已知M在AB上,BC=BD,MC=MD,請說明:AC=AD。

查看答案和解析>>

同步練習冊答案