【題目】如圖所示,BD⊥AC于點D,FG⊥AC于點G,∠1=∠2,試證明:∠ADE=∠C
【答案】證明見解析.
【解析】
由BD與FG都與AC垂直,利用垂直定義得到一對直角相等,利用同位角相等兩直線平行得到FG與BD平行,再利用兩直線平行同位角相等得到∠2=∠3,而∠1=∠2,等量代換得到一對內(nèi)錯角相等,利用內(nèi)錯角相等兩直線平行得到DE與BC平行,再利用兩直線平行同位角相等即可得證.
證明:如圖,
∵BD⊥AC,FG⊥AC(已知),
∴∠CGF=∠CDB,
∴FG∥BD(同位角相等,兩直線平行),
∴∠2=∠3(兩直線平行,同位角相等),
又∵∠1=∠2(已知),
∴∠1=∠3(等量代換),
∴DE∥BC(內(nèi)錯角相等,兩直線平行),
∴∠ADE=∠C(兩直線平行,同位角相等).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,E、F分別是BC、AC的中點,以AC為斜邊作Rt△ADC.
(1)求證:FE=FD;
(2)若∠CAD=∠CAB=24°,求∠EDF的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1+∠2=180°,∠3=∠B,試判斷∠AED與∠C的大小關(guān)系,并證明你的結(jié)論.
∠C與∠AED相等,理由如下:
∵∠1+∠2=180°(已知),∠1+∠DFE=180°(鄰補角定義)
∴∠2=___(___),
∴AB∥EF(___)
∵∠3=___(___)
又∠B=∠3(已知)
∴∠B=___(等量代換)
∴DE∥BC(___)
∴∠C=∠AED(___).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖象過點A(0,3)和點B(3,0),且與正比例函數(shù)的圖象交于點P.
(1)求函數(shù)的解析式和點P的坐標(biāo).
(2)畫出兩個函數(shù) 的圖象,并直接寫出當(dāng)時的取值范圍.
(3)若點Q是軸上一點,且△PQB的面積為8,求點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,已知AB=AC,D是AC上的一點,CD=9,BC=15,BD=12.
(1)判斷△BCD的形狀并證明你的結(jié)論.
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1+∠2=180°,∠A=∠C,AD平分∠BDF.
(1)AE與FC的位置關(guān)系如何?為什么?
(2)AD與BC的位置關(guān)系如何?為什么?
(3)BC平分∠DBE嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】紅紅和娜娜按下圖所示的規(guī)則玩“錘子、剪刀、布”游戲,
游戲規(guī)則:若一人出“剪刀”,另一人出“布”,則出“剪刀”者勝;若一人出“錘子”,另一人出“剪刀”,則出“錘子”者勝;若一人出“布”,另一人出“錘子”,則出“布”者勝,若兩人出相同的手勢,則兩人平局.
下列說法中錯誤的是
A. 紅紅不是勝就是輸,所以紅紅勝的概率為
B. 紅紅勝或娜娜勝的概率相等
C. 兩人出相同手勢的概率為
D. 娜娜勝的概率和兩人出相同手勢的概率一樣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A(10,0),以O(shè)A為直徑在第一象限內(nèi)作半圓C,點B是該半圓周上的一動點,連結(jié)OB、AB,并延長AB至點D,使DB=AB,過點D作x軸垂線,分別交x軸、直線OB于點E、F,點E為垂足,連結(jié)CF.
(1)當(dāng)∠AOB=30°時,求弧AB的長;
(2)當(dāng)DE=8時,求線段EF的長;
(3)在點B運動過程中,是否存在以點E、C、F為頂點的三角形與△AOB相似,若存在,請求出此時點E的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com