【題目】某校為美化校園,計劃對面積為400平方米的花壇區(qū)域進行綠化,安排甲工程隊或乙工程隊完成.已知甲隊平均每天完成綠化的面積是乙隊的2倍,并且甲隊比乙隊能少用4天完成任務,求甲、乙兩工程隊平均每天能完成綠化的面積分別是多少平方米?
【答案】甲工程隊平均每天能完成綠化的面積是100平方米,乙工程隊平均每天能完成綠化的面積是50平方米.
【解析】
設乙工程隊平均每天能完成綠化的面積是x平方米,則甲工程隊平均每天能完成綠化的面積是2x平方米,根據(jù)工作時間=工作總量÷工作效率結(jié)合甲隊比乙隊能少用4天完成任務,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論.
設乙工程隊平均每天能完成綠化的面積是x平方米,則甲工程隊平均每天能完成綠化的面積是2x平方米,
依題意,得: ,
解得:x=50,
經(jīng)檢驗,x=50是原方程的解,且符合題意,
∴2x=100.
答:甲工程隊平均每天能完成綠化的面積是100平方米,乙工程隊平均每天能完成綠化的面積是50平方米.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點A、C,與AB交于點D.
(1)求拋物線的函數(shù)解析式;
(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設CP=m,△CPQ的面積為S.
①求S關(guān)于m的函數(shù)表達式;
②當S最大時,在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點F,使△DFQ為直角三角形,請直接寫出所有符合條件的點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,已知AB⊥BC于點B,底座BC的長為1米,底座BC與支架AC所成的角∠ACB=60°,點H在支架AF上,籃板底部支架EH∥BC,EF⊥EH于點E,已知AH長米,HF長米,HE長1米.
(1)求籃板底部支架HE與支架AF所成的角∠FHE的度數(shù).
(2)求籃板底部點E到地面的距離.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學九年級共有6個班,要從中選出兩個班代表學校參加一項重大活動,九(1)班是先進班,學校指定該班必須參加,另外再從九(2)班到九(6)班中選出一個班,九(4)班有同學建議用如下方法選班:從裝有編號為1,2,3的三個白球的A袋中摸出一個球,再從裝有編號也為1,2,3的三個紅球的B袋中摸出一個球(兩袋中球的大小、形狀與質(zhì)地完全一樣),摸出的兩個球編號之和是幾就派幾班參加.
(1)請用列表或畫樹形圖的方法列舉出摸出的兩球編號的所有可能出現(xiàn)的結(jié)果;
(2)如果采用這一建議選班,對五個班是一樣公平的嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,連接AE.AC和BE相交于點O.
(1)判斷四邊形ABCE是怎樣的四邊形,說明理由;
(2)如圖2,P是線段BC上一動點(圖2),(不與點B、C重合),連接PO并延長交線段AE于點Q,QR⊥BD,垂足為點R.
①四邊形PQED的面積是否隨點P的運動而發(fā)生變化.若變化,請說明理由;若不變,求出四邊形PQED的面積;
②當線段PB的長為何值時,△PQR與△BOC相似.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+2與x軸交于A,B兩點,與y軸交于C點,A(5,0)且AB=3OC,P為x軸上方拋物線上的動點(P不與A,B重合),過點P作PQ⊥x軸于點Q,作PM與x軸平行,交拋物線另一點M,以PQ,PM為鄰邊作矩形PQNM.
(1)求拋物線的函數(shù)表達式;
(2)設矩形PQNM的周長為C,求C的取值范圍;
(3)如圖2,當P點與C點重合時,連接對角線PN,取PN上一點D(不與P,N重合),連接DM,作DE⊥DM,交x軸于點E.
①試求的值;
②試探求是否存在點D,使△DEN是等腰三角形?若存在,請直接寫出符合條件的點D坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=與拋物線y=交于A、B兩點,且點A在x軸上,點B的橫坐標為-4,點P為直線AB上方的拋物線上一動點(不與點A、B重合),過點P作x軸的垂線交直線AB于點Q,PH⊥AB于H.
(1)求b的值及sin∠PQH的值;
(2)設點P的橫坐標為t,用含t的代數(shù)式表示點P到直線AB的距離PH的長,并求出PH之長的最大值以及此時t的值;
(3)連接PB,若線段PQ把△PBH分成成△PQB與△PQH的面積相等,求此時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,CD⊥AB,∠CAB的平分線AE交CD于點H、交CB于點E,EF⊥AB于點F,則下列結(jié)論中不正確的是( 。
A. ∠ACD=∠BB. CH=CE=EFC. CH=HDD. AC=AF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形紙片ABCD沿對角線BD折疊,使點A落在平面上的F點處,DF交BC于點E.
(1)求證:△DCE≌△BFE;
(2)若CD=2,∠ADB=30°,求BE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com