在“母親節(jié)”前夕,我市某校學(xué)生積極參與“關(guān)愛貧困母親”的活動,他們購進一批單價為20元的“孝文化衫”在課余時間進行義賣,并將所得利潤捐給貧困母親.經(jīng)試驗發(fā)現(xiàn),若每件按24元的價格銷售時,每天能賣出36件;若每件按29元的價格銷售時,每天能賣出21件.假定每天銷售件數(shù)y(件)與銷售價格x(元/件)滿足一個以x為自變量的一次函數(shù).
(1)求y與x滿足的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(2)在不積壓且不考慮其他因素的情況下,銷售價格定為多少元時,才能使每天獲得的利潤P最大?

解:(1)設(shè)y與x滿足的函數(shù)關(guān)系式為:y=kx+b.
由題意可得:
解得
故y與x的函數(shù)關(guān)系式為:y=-3x+108.

(2)每天獲得的利潤為:P=(-3x+108)(x-20)=-3x2+168x-2160=-3(x-28)2+192.
故當(dāng)銷售價定為28元時,每天獲得的利潤最大.
分析:(1)設(shè)y與x滿足的函數(shù)關(guān)系式為:y=kx+b.,由題意可列出k和b的二元一次方程組,解出k和b的值即可;
(2)根據(jù)題意:每天獲得的利潤為:P=(-3x+108)(x-20),轉(zhuǎn)換為P=-3(x-28)2+192,于是求出每天獲得的利潤P最大時的銷售價格.
點評:本題主要考查二次函數(shù)的應(yīng)用的知識點,解答本題的關(guān)鍵是熟練掌握二次函數(shù)的性質(zhì)以及最值得求法,此題難度不大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•孝感)在“母親節(jié)”前夕,我市某校學(xué)生積極參與“關(guān)愛貧困母親”的活動,他們購進一批單價為20元的“孝文化衫”在課余時間進行義賣,并將所得利潤捐給貧困母親.經(jīng)試驗發(fā)現(xiàn),若每件按24元的價格銷售時,每天能賣出36件;若每件按29元的價格銷售時,每天能賣出21件.假定每天銷售件數(shù)y(件)與銷售價格x(元/件)滿足一個以x為自變量的一次函數(shù).
(1)求y與x滿足的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(2)在不積壓且不考慮其他因素的情況下,銷售價格定為多少元時,才能使每天獲得的利潤P最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年湖北省孝感市高級中等學(xué)校招生考試數(shù)學(xué) 題型:044

在“母親節(jié)”前夕,我市某校學(xué)生積極參與“關(guān)愛貧困母親”的活動,他們購進一批單價為20元的“孝文化衫”在課余時間進行義賣,并將所得利潤捐給貧困母親.經(jīng)試驗發(fā)現(xiàn),若每件按24元的價格銷售時,每天能賣出36件;若每件按29元的價格銷售時,每天能賣出21件.假定每天銷售件數(shù)y(件)與銷售價格x(元/件)滿足一個以x為自變量的一次函數(shù).

(1)求yx滿足的函數(shù)關(guān)系式(不要求寫出x的取值范圍);

(2)在不積壓且不考慮其他因素的情況下,銷售價格定為多少元時,才能使每天獲得的利潤P最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(湖北孝感卷)數(shù)學(xué)(解析版) 題型:解答題

在“母親節(jié)”前夕,我市某校學(xué)生積極參與“關(guān)愛貧困母親”的活動,他們購進一批單價為20元的“孝文化衫”在課余時間進行義賣,并將所得利潤捐給貧困母親.經(jīng)試驗發(fā)現(xiàn),若每件按24元的價格銷售時,每天能賣出36件;若每件按29元的價格銷售時,每天能賣出21件.假定每天銷售件數(shù)y(件)與銷售價格x(元/件)滿足一個以x為自變量的一次函數(shù).

(1)求y與x滿足的函數(shù)關(guān)系式(不要求寫出x的取值范圍);

(2)在不積壓且不考慮其他因素的情況下,銷售價格定為多少元時,才能使每天獲得的利潤P最大?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年湖北省孝感市中考數(shù)學(xué)試卷(解析版) 題型:解答題

在“母親節(jié)”前夕,我市某校學(xué)生積極參與“關(guān)愛貧困母親”的活動,他們購進一批單價為20元的“孝文化衫”在課余時間進行義賣,并將所得利潤捐給貧困母親.經(jīng)試驗發(fā)現(xiàn),若每件按24元的價格銷售時,每天能賣出36件;若每件按29元的價格銷售時,每天能賣出21件.假定每天銷售件數(shù)y(件)與銷售價格x(元/件)滿足一個以x為自變量的一次函數(shù).
(1)求y與x滿足的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(2)在不積壓且不考慮其他因素的情況下,銷售價格定為多少元時,才能使每天獲得的利潤P最大?

查看答案和解析>>

同步練習(xí)冊答案