已知:如圖,在△ABC中,AB =15,BC=14,AC=13.求△ABC的面積.

 

【答案】

84

【解析】

試題分析:先作△ABC的高AD,那么題中有兩個(gè)直角三角形.AD在這兩個(gè)直角三角形中,設(shè)BD為未知數(shù),可利用勾股定理都表示出AD長(zhǎng).求得BD長(zhǎng),再根據(jù)勾股定理求得AD長(zhǎng),從而求得結(jié)果.

如圖,作△ABC的高AD,

設(shè)BD=x,則CD=14-x,在Rt△ABD中,AD2+x2=152

在Rt△ADC中,AD2=132-(14-x)2

所以有152-x2=132-(14-x)2,

解得x=9,

在Rt△ABD中,

考點(diǎn):本題考查了勾股定理的應(yīng)用

點(diǎn)評(píng):解決本題的關(guān)鍵在于利用兩個(gè)直角三角形的公共邊找到突破點(diǎn).主要利用了勾股定理進(jìn)行解答.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

34、已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點(diǎn)O為圓心,過A,D兩點(diǎn)作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若(1)中的⊙O與AB邊的另一個(gè)交點(diǎn)為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號(hào)和π)《根據(jù)2011江蘇揚(yáng)州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點(diǎn)D和點(diǎn)E.
(1)作出邊AC的垂直平分線DE;
(2)當(dāng)AE=BC時(shí),求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在AB、AC上各取一點(diǎn)E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:專項(xiàng)題 題型:證明題

已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連結(jié)BD,CE,BD與CE交于O,連結(jié)AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習(xí)冊(cè)答案