如左圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a>0)的圖象的頂點(diǎn)為D點(diǎn),與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),OB=OC,tan∠ACO=數(shù)學(xué)公式
(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)經(jīng)過C、D兩點(diǎn)的直線,與x軸交于點(diǎn)E,在該拋物線上是否存在這樣的點(diǎn)F,使以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)若平行于x軸的直線與該拋物線交于M、N兩點(diǎn),且以MN為直徑的圓與x軸相切,求該圓半徑的長(zhǎng)度.
(4)如圖,若點(diǎn)G(2,y)是該拋物線上一點(diǎn),點(diǎn)P是直線AG下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△APG的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和△APG的最大面積.
作業(yè)寶

解:(1)方法一:由已知得:C(0,-3),A(-1,0)
將A、B、C三點(diǎn)的坐標(biāo)代入

解得:
所以這個(gè)二次函數(shù)的表達(dá)式為:y=x2-2x-3
方法二:由已知得:C(0,-3),A(-1,0)
設(shè)該表達(dá)式為:y=a(x+1)(x-3)
將C點(diǎn)的坐標(biāo)代入得:a=1
所以這個(gè)二次函數(shù)的表達(dá)式為:y=x2-2x-3
(注:表達(dá)式的最終結(jié)果用三種形式中的任一種都不扣分)

(2)方法一:存在,F(xiàn)點(diǎn)的坐標(biāo)為(2,-3)
理由:易得D(1,-4),
所以直線CD的解析式為:y=-x-3
∴E點(diǎn)的坐標(biāo)為(-3,0)
由A、C、E、F四點(diǎn)的坐標(biāo)得:AE=CF=2,AE∥CF
∴以A、C、E、F為頂點(diǎn)的四邊形為平行四邊形
∴存在點(diǎn)F,坐標(biāo)為(2,-3)
方法二:易得D(1,-4),所以直線CD的解析式為:y=-x-3
∴E點(diǎn)的坐標(biāo)為(-3,0)
∵以A、C、E、F為頂點(diǎn)的四邊形為平行四邊形
∴F點(diǎn)的坐標(biāo)為(2,-3)或(-2,-3)或(-4,3)
代入拋物線的表達(dá)式檢驗(yàn),只有(2,-3)符合
∴存在點(diǎn)F,坐標(biāo)為(2,-3)

(3)如圖,①當(dāng)直線MN在x軸上方時(shí),
設(shè)圓的半徑為R(R>0),則N(R+1,R),
代入拋物線的表達(dá)式,解得
②當(dāng)直線MN在x軸下方時(shí),
設(shè)圓的半徑為r(r>0),
則N(r+1,-r),
代入拋物線的表達(dá)式,
解得
∴圓的半徑為

(4)過點(diǎn)P作y軸的平行線與AG交于點(diǎn)Q,
易得G(2,-3),直線AG為y=-x-1.
設(shè)P(x,x2-2x-3),則Q(x,-x-1),
PQ=-x2+x+2.S△APG=S△APQ+S△GPQ=(-x2+x+2)×3
當(dāng)x=時(shí),△APG的面積最大
此時(shí)P點(diǎn)的坐標(biāo)為(,-),S△APG的最大值為
分析:(1)求二次函數(shù)的表達(dá)式,需要求出A、B、C三點(diǎn)坐標(biāo).已知B點(diǎn)坐標(biāo),且OB=OC,可知C(0,3),tan∠ACO=,則A坐標(biāo)為(-1,0).將A,B,C三點(diǎn)坐標(biāo)代入關(guān)系式,可求得二次函數(shù)的表達(dá)式.
(2)假設(shè)存在這樣的點(diǎn)F(m,n),已知拋物線關(guān)系式,求出頂點(diǎn)D坐標(biāo),今兒求出直線CD,E是直線與x軸交點(diǎn),可得E點(diǎn)坐標(biāo).四邊形AECF為平行四邊形,則CE∥AF,則兩直線斜率相等,可列等式(1),CE=AF,可列等式(2),F(xiàn)在拋物線上,為等式(3),根據(jù)這三個(gè)等式,即可求出m、n是否存在.
(3)分情況討論,當(dāng)圓在x軸上方時(shí),根據(jù)題意可知,圓心必定在拋物線的對(duì)稱軸上,設(shè)圓半徑為r,則N的坐標(biāo)為(r+1,r),將其代入拋物線解析式,可求出r的值.當(dāng)圓在x軸的下方時(shí),方法同上,只是N的坐標(biāo)變?yōu)椋╮+1,-r),代入拋物線解析式即可求解.
(4)G在拋物線上,代入解析式求出G點(diǎn)坐標(biāo),設(shè)點(diǎn)P的坐標(biāo)為(x,y),即(x,x2-2x-3)已知點(diǎn)A、G坐標(biāo),可求出線段AG的長(zhǎng)度,以及直線AG的解析式,再根據(jù)點(diǎn)到直線的距離求出P到直線的距離,即為三角形AGP的高,從而用x表示出三角形的面積,然后求當(dāng)面積最大時(shí)x的值.
點(diǎn)評(píng):此題考查二次函數(shù)與x軸,y軸坐標(biāo)求法,頂點(diǎn)坐標(biāo)公式,二次函數(shù)圖象與平行四邊形,圓相結(jié)合,重點(diǎn)考查了平行四邊形,圓的性質(zhì)特征.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如左圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a>0)的圖象的頂點(diǎn)為D點(diǎn),與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),OB=OC,tan∠ACO=
13

(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)經(jīng)過C、D兩點(diǎn)的直線,與x軸交于點(diǎn)E,在該拋物線上是否存在這樣的點(diǎn)F,使以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)若平行于x軸的直線與該拋物線交于M、N兩點(diǎn),且以MN為直徑的圓與x軸相切,求該圓半徑的長(zhǎng)度.
(4)如圖,若點(diǎn)G(2,y)是該拋物線上一點(diǎn),點(diǎn)P是直線AG下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△APG的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和△APG的最大面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年蘇科版九年級(jí)(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如左圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a>0)的圖象的頂點(diǎn)為D點(diǎn),與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),OB=OC,tan∠ACO=
(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)經(jīng)過C、D兩點(diǎn)的直線,與x軸交于點(diǎn)E,在該拋物線上是否存在這樣的點(diǎn)F,使以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)若平行于x軸的直線與該拋物線交于M、N兩點(diǎn),且以MN為直徑的圓與x軸相切,求該圓半徑的長(zhǎng)度.
(4)如圖,若點(diǎn)G(2,y)是該拋物線上一點(diǎn),點(diǎn)P是直線AG下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△APG的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和△APG的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年湖南省長(zhǎng)沙市長(zhǎng)郡中學(xué)理科班入學(xué)數(shù)學(xué)試卷(二)(解析版) 題型:解答題

如左圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a>0)的圖象的頂點(diǎn)為D點(diǎn),與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),OB=OC,tan∠ACO=
(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)經(jīng)過C、D兩點(diǎn)的直線,與x軸交于點(diǎn)E,在該拋物線上是否存在這樣的點(diǎn)F,使以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)若平行于x軸的直線與該拋物線交于M、N兩點(diǎn),且以MN為直徑的圓與x軸相切,求該圓半徑的長(zhǎng)度.
(4)如圖,若點(diǎn)G(2,y)是該拋物線上一點(diǎn),點(diǎn)P是直線AG下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△APG的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和△APG的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年北京市中考數(shù)學(xué)模擬試卷(三)(解析版) 題型:解答題

如左圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a>0)的圖象的頂點(diǎn)為D點(diǎn),與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),OB=OC,tan∠ACO=
(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)經(jīng)過C、D兩點(diǎn)的直線,與x軸交于點(diǎn)E,在該拋物線上是否存在這樣的點(diǎn)F,使以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)若平行于x軸的直線與該拋物線交于M、N兩點(diǎn),且以MN為直徑的圓與x軸相切,求該圓半徑的長(zhǎng)度.
(4)如圖,若點(diǎn)G(2,y)是該拋物線上一點(diǎn),點(diǎn)P是直線AG下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△APG的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和△APG的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年江蘇省蘇州市立達(dá)、一中聯(lián)合中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

如左圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a>0)的圖象的頂點(diǎn)為D點(diǎn),與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),OB=OC,tan∠ACO=
(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)經(jīng)過C、D兩點(diǎn)的直線,與x軸交于點(diǎn)E,在該拋物線上是否存在這樣的點(diǎn)F,使以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)若平行于x軸的直線與該拋物線交于M、N兩點(diǎn),且以MN為直徑的圓與x軸相切,求該圓半徑的長(zhǎng)度.
(4)如圖,若點(diǎn)G(2,y)是該拋物線上一點(diǎn),點(diǎn)P是直線AG下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△APG的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和△APG的最大面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案