如圖,AB∥CD,直線EF分別交AB、CD于點E、F,EG平分∠AEF,∠1=40°,求∠2的度數(shù).
解:因為EG平分∠AEF(已知),
所以∠AEF=2∠
AEG
AEG
角平分線定義
角平分線定義
),
因為AB∥CD(已知),
所以∠1=∠
AEG
AEG
 (
兩直線平行,內(nèi)錯角相等
兩直線平行,內(nèi)錯角相等
),
因為∠1=40°(已知),
所以∠AEF=
80
80
°  (等式的性質(zhì)),
因為∠AEF+∠2=
180
180
°(
鄰補角互補
鄰補角互補
),
所以∠2=
100
100
°(等式的性質(zhì)).
分析:首先根據(jù)角平分線定義得到∠AEF=2∠AEG,再根據(jù)平行線的性質(zhì)證出∠AEF=2∠1,進(jìn)而得到∠AEF=80°,再根據(jù)鄰補角互補可算出∠2的度數(shù).
解答:解:因為EG平分∠AEF(已知),
所以∠AEF=2∠AEG(角平分線定義),
因為AB∥CD(已知),
所以∠1=∠AEG (兩直線平行,內(nèi)錯角相等),
因為∠1=40°(已知),
所以∠AEF=80°  (等式的性質(zhì)),
因為∠AEF+∠2=180°(鄰補角互補),
所以∠2=100°(等式的性質(zhì)).
點評:此題主要考查了平行線的判定與性質(zhì),關(guān)鍵是熟練掌握平行線的判定定理與性質(zhì)定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰梯形ABCD中,AB∥DC,∠A=45°,AB=10cm,CD=4cm.等腰直角三角形PMN的斜邊MN=10cm,A點與N點重合,MN和AB在一條直線上,設(shè)等腰梯形ABCD不動,等腰直角三角形PMN沿AB所在直線以1cm/s的速度向右移動,直到點N與點B重合為止.
(1)等腰直角三角形PMN在整個移動過程中與等腰梯形ABCD重疊部分的形狀由
 
形變化為
 
形;
(2)設(shè)當(dāng)?shù)妊苯侨切蜳MN移動x(s)時,等腰直角三角形PMN與等腰梯形ABCD重疊部分的面積為y(cm2),求y與x之間的函數(shù)關(guān)系式;
(3)當(dāng)x=4(s)時,求等腰直角三角形PMN與等腰梯形ABCD重疊部分的面積.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在舞臺上有兩根豎直放置的鐵桿,其中鐵桿AB長1m,CD長2m,兩根鐵桿之間的距離為3m,現(xiàn)在B、D之間拉起一根鋼索,雜技演員在上面表演走鋼絲,為了描述演員的位置,小明以A點為坐標(biāo)原點,建立了如圖所示的平面直角坐標(biāo)系,演員的位置為點M,設(shè)其精英家教網(wǎng)橫坐標(biāo)為x,縱坐標(biāo)為y.
(1)寫出線段BD的函數(shù)關(guān)系式;
(2)為了保護(hù)演員的安全,過D點拉了一根與地面平行的鋼索DE,在上面掛上了一條保險鋼絲MN,MN隨演員的移動而移動,并始終垂直于地面,其長度自動調(diào)整,設(shè)保險鋼絲的長度為w,求w與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將網(wǎng)格中的三條線段AB、CD、EF沿網(wǎng)格線(水平和鉛直方向)平移,使它們首尾相接構(gòu)成三角形,至少需要移動
7
7
格.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:江蘇省張家港市2012年中考網(wǎng)上閱卷適應(yīng)性考試數(shù)學(xué)試題 題型:013

如圖,AB為⊙O的直甲徑,PD切⊙O于點C,交AB的延長線于D,且CO=CD,則∠PCA=

[  ]

A.60°

B.65°

C.67.

D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué)解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

同步練習(xí)冊答案