如圖,CD是Rt△ABC斜邊AB上的高,將△BCD沿CD折疊,B點恰好落在AB的中點E處,則∠A等于( 。
A.25°B.30°C.45°D.60°
B
考查直角三角形的性質(zhì),等邊三角形的判定及圖形折疊等知識的綜合應(yīng)用能力及推理能力.先根據(jù)圖形折疊的性質(zhì)得出BC=CE,再由直角三角形斜邊的中線等于斜邊的一半即可得出CE=AE,進而可判斷出△BEC是等邊三角形,由等邊三角形的性質(zhì)及直角三角形兩銳角互補的性質(zhì)即可得出結(jié)論.
解:△ABC沿CD折疊B與E重合,
則BC=CE,
∵E為AB中點,△ABC是直角三角形,
∴CE=BE=AE,
∴△BEC是等邊三角形.
∴∠B=60°,
∴∠A=30°,
故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,AB=AC,點D在邊BC所在的直線上,過點D作DF∥AC交直線AB于點F,DE∥AB交直線AC于點E.
(1)當點D在邊BC上時,如圖①,求證:DE+DF=AC.
(2)當點D在邊BC的延長線上時,如圖②;當點D在邊BC的反向延長線上時,如圖③,請分別寫出圖②、圖③中DE,DF,AC之間的數(shù)量關(guān)系,不需要證明.
(3)若AC=6,DE=4,則DF=             

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,D是BA延長線上的一點,點E是AC的中點.
(1)實踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標明相應(yīng)字母(保留作圖痕跡,不寫作法).
①作∠DAC的平分線AM. ②連接BE并延長交AM于點F.
(2)猜想與證明:試猜想AF與BC有怎樣的位置關(guān)系和數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

用正三角形作平面鑲嵌,同一頂點周圍,正三角形的個數(shù)為     個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知的三邊長分別是6cm、8cm、10cm,則的面積是(   )
A.24B.30C.40D.48

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一個六邊形的六個內(nèi)角都是120度,連續(xù)四邊的長為1,3,4,2,則該六邊形的周長是(    )。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖鋼架中,焊上等長的13根鋼條來加固鋼架,若AP1=P1P2=P2P3=…=P13P14=P14A,則∠A的度數(shù)是 (        )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知邊長為5的等邊三角形ABC紙片,點E在AC邊上,點F在AB邊上,沿著EF折疊,使點A落在BC邊上的點D的位置,且ED⊥BC,則CE的長是( 。
A.10-15B.10-5
C.5-5 D.20-10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,一個60°角的三角形紙片,剪去這個60°角后,得到一個四邊形,則∠1+∠2的度數(shù)為(  )
A.120°B.180°C.240° D.300°

查看答案和解析>>

同步練習(xí)冊答案