如圖,點O是等邊三角形ABC內(nèi)一點,∠AOB=100°,∠BOC=α.把△BOC繞點C按逆時針方向旋轉(zhuǎn)60°得△ADC,連接OD.
(1)說明△COD是等邊三角形;
(2)填空:用α表示∠AOD的結(jié)果為
200°-α
200°-α
;用α表示∠ADO的結(jié)果為
α-60°
α-60°
分析:(1)由旋轉(zhuǎn)的性質(zhì)知△BOC≌△ADC,∠OCD=60°.根據(jù)全等三角形的易證OC=CD.則有一內(nèi)角為60°的等腰三角形為正三角形;
(2)根據(jù)周角的定義用α表示∠AOD.由全等三角形(△BOC≌△ADC)的對應(yīng)邊和等邊△OCD的性質(zhì)求得∠AOD=α-60°.
解答:(1)證明:根據(jù)旋轉(zhuǎn)的性質(zhì)知,△BOC≌△ADC,則OC=DC.
又∵△BOC繞點C按逆時針方向旋轉(zhuǎn)60°得到△ADC,
∴∠OCD=60°,
∴△COD是等邊三角形(有一內(nèi)角為60°的等腰三角形為正三角形);

(2)解:∵由(1)知,△COD是等邊三角形,則∠COD=∠ODC=60°,
∴∠AOD=360°-∠COD-∠COB-∠AOB=360°-60°-α-100°=200°-α;
∵△BOC≌△ADC,∴∠BOC=∠ADC=α,
∴∠ADO=∠ADC-∠ODC=∠BOC-∠ODC=α-60°.
故答案是:200°-α;α-60°.
點評:本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的判定與性質(zhì).注意利用隱含于題干中的已知條件:周角是360°.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

.如圖,在平面直角坐標系中,已知點A(0,2),點P是x軸上一動點,以線段AP為一邊,在其一側(cè)作等邊三角線APQ。當(dāng)點P運動到原點O處時,記Q得位置為B。

(1)求點B的坐標;

(2)求證:當(dāng)點P在x軸上運動(P不與Q重合)時,∠ABQ為定值;

(3)是否存在點P,使得以A、O、Q、B為頂點的四邊形是梯形?若存在,請求出P點的坐標;若不存在,請說明理由。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

.如圖,在平面直角坐標系中,已知點A(0,2),點P是x軸上一動點,以線段AP為一邊,在其一側(cè)作等邊三角線APQ。當(dāng)點P運動到原點O處時,記Q得位置為B。
(1)求點B的坐標;
(2)求證:當(dāng)點P在x軸上運動(P不與Q重合)時,∠ABQ為定值;
(3)是否存在點P,使得以A、O、Q、B為頂點的四邊形是梯形?若存在,請求出P點的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(湖南長沙卷)數(shù)學(xué) 題型:解答題

.如圖,在平面直角坐標系中,已知點A(0,2),點P是x軸上一動點,以線段AP為一邊,在其一側(cè)作等邊三角線APQ。當(dāng)點P運動到原點O處時,記Q得位置為B。
(1)求點B的坐標;
(2)求證:當(dāng)點P在x軸上運動(P不與Q重合)時,∠ABQ為定值;
(3)是否存在點P,使得以A、O、Q、B為頂點的四邊形是梯形?若存在,請求出P點的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年山東勝利七中九年級中考二模數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在平面直角坐標系中,已知點A(0,2),點P是x軸上一動點,以線段AP為一邊,在其一側(cè)作等邊三角線APQ.當(dāng)點P運動到原點O處時,記Q的位置為B.

(1)求點B的坐標;

(2)求證:當(dāng)點P在x軸上運動(P不與O重合)時,∠ABQ為定值;

(3)是否存在點P,使得以A、O、Q、B為頂點的四邊形是梯形?若存在,請求出P點的坐標;若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(湖北黃岡卷)數(shù)學(xué) 題型:解答題

.如圖,在平面直角坐標系中,已知點A(0,2),點P是x軸上一動點,以線段AP為一邊,在其一側(cè)作等邊三角線APQ。當(dāng)點P運動到原點O處時,記Q得位置為B。

(1)求點B的坐標;

(2)求證:當(dāng)點P在x軸上運動(P不與Q重合)時,∠ABQ為定值;

(3)是否存在點P,使得以A、O、Q、B為頂點的四邊形是梯形?若存在,請求出P點的坐標;若不存在,請說明理由。

 

查看答案和解析>>

同步練習(xí)冊答案