已知,如圖(a),拋物線經(jīng)過點(diǎn)A(x1,0),B(x2,0),C(0,-2),其頂點(diǎn)為D.以AB為直徑的⊙M交y軸于點(diǎn)E、F,過點(diǎn)E作⊙M的切線交x軸于點(diǎn)N!螼NE=30°,。
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)連結(jié)AD、BD,在(1)中的拋物線上是否存在一點(diǎn)P,使得△ABP與△ADB相似?若存在,求出P點(diǎn)的坐標(biāo);若不存在,說明理由;
(3)如圖(b),點(diǎn)Q為上的動(dòng)點(diǎn)(Q不與E、F重合),連結(jié)AQ交y軸于點(diǎn)H,問:AH·AQ是否為定值?若是,請求出這個(gè)定值;若不是,請說明理由。
解:(1)圓的半徑,
連接EM,
∵NE是⊙M的切線,∴ME⊥NE。
在Rt△MNE中,∠ONE=30°,MA=ME=4,
∴∠EMN=60°,MN=8!郞M=2。
∴OA=2,OB=6。
∴點(diǎn)A、B的坐標(biāo)分別為(―2,0),(6,0)。
∵拋物線經(jīng)過點(diǎn)A、B兩點(diǎn),
∴設(shè)拋物線的解析式為,
又∵拋物線經(jīng)過點(diǎn)C(0,-2),
∴,解得。
∴拋物線的解析式為,即。
∵,∴拋物線頂點(diǎn)D的坐標(biāo)為(2,)。
(2)如圖,由拋物線的對稱性可知:AD=BD,∠DAB=∠DBA。
若在拋物線對稱性的右側(cè)圖象上存在點(diǎn)P,使△ABP與△ADB相似,
必須有∠BAP=∠BPA=∠BPD。
設(shè)AP交拋物線的對稱軸于D′點(diǎn),則D′(2,)。
∴直線AP的解析式為 。
由解得:
(舍去)。
∴P(10,8)。
過P作PG⊥x軸于點(diǎn)G,
在Rt△BGP中,BG=4,PG=8,
∴由勾股定理,得PB=。
∵PA=8,∴PA≠PB!唷螧AP≠∠BPA。
∴△ABP與△ADB不相似。
同理可說明在對稱軸左邊的拋物線上也不存在符合條件的P點(diǎn)。
∴在該拋物線上不存在點(diǎn)P,使得△ABP與△ADB相似。
(3)連接AF、QF,
在△AQF和△AFH中,
由垂徑定理易知:,
∴∠AQF=∠AFH。
又∠QAF=∠HAF,
∴△AQF∽△AFH。
∴,∴。
在Rt△AOF中,
,
∴AH·AQ=16,即:AH·AQ為定值
解析試題分析:(1)由切線的性質(zhì)和含30度角直角三角形的性質(zhì),求出點(diǎn)A、B的坐標(biāo),從而應(yīng)用待定系數(shù)法求出拋物線的解析式,化為頂點(diǎn)式即可得到拋物線的頂點(diǎn)D的坐標(biāo)。
(2)應(yīng)用反證法分拋物線對稱性的右側(cè)和拋物線對稱性的左側(cè)兩種情況說明在該拋物線上不存在點(diǎn)P,使得△ABP與△ADB相似。
(3)由垂徑定理和相似三角形的判定和性質(zhì),可得,在Rt△AOF中,應(yīng)用勾股定理可得,從而得出AH·AQ為定值的結(jié)論。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
某玩具批發(fā)商銷售每件進(jìn)價(jià)為40元的玩具,市場調(diào)查發(fā)現(xiàn),若以每件50元的價(jià)格銷售,平均每天銷售90件,單價(jià)每提高1元,平均每天就少銷售3件.
(1)平均每天的銷售量y(件)與銷售價(jià)x(元/件)之間的函數(shù)關(guān)系式為 ;
(2)求該批發(fā)商平均每天的銷售利潤W(元)與銷售價(jià)x(元/件)之間的函數(shù)關(guān)系式;
(3)物價(jià)部門規(guī)定每件售價(jià)不得高于55元,當(dāng)每件玩具的銷售價(jià)為多少元時(shí),可以獲得最大利潤?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知拋物線(b,c為常數(shù))的頂點(diǎn)為P,等腰直角三角形ABC的頂點(diǎn)A的坐標(biāo)為(0,﹣1),C的坐標(biāo)為(4,3),直角頂點(diǎn)B在第四象限.
(1)如圖,若該拋物線過A,B兩點(diǎn),求該拋物線的函數(shù)表達(dá)式;
(2)平移(1)中的拋物線,使頂點(diǎn)P在直線AC上滑動(dòng),且與AC交于另一點(diǎn)Q.
(i)若點(diǎn)M在直線AC下方,且為平移前(1)中的拋物線上的點(diǎn),當(dāng)以M、P、Q三點(diǎn)為頂點(diǎn)的三角形是等腰直角三角形時(shí),求出所有符合條件的點(diǎn)M的坐標(biāo);
(ii)取BC的中點(diǎn)N,連接NP,BQ.試探究是否存在最大值?若存在,求出該最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在直角坐標(biāo)系xOy中,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點(diǎn)B,使△AOB的面積等于6,求點(diǎn)B的坐標(biāo);
(3)對于(2)中的點(diǎn)B,在此拋物線上是否存在點(diǎn)P,使∠POB=90°?若存在,求出點(diǎn)P的坐標(biāo),并求出△POB的面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線與x軸交于A(1,0)、B(﹣3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3),設(shè)拋物線的頂點(diǎn)為D.
(1)求該拋物線的解析式與頂點(diǎn)D的坐標(biāo).
(2)試判斷△BCD的形狀,并說明理由.
(3)探究坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCD相似?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖.在平面直角坐標(biāo)系中,邊長為的正方形ABCD的頂點(diǎn)A、B在x軸上,連接OD、BD、△BOD的外心I在中線BF上,BF與AD交于點(diǎn)E.
(1)求證:△OAD≌△EAB;
(2)求過點(diǎn)O、E、B的拋物線所表示的二次函數(shù)解析式;
(3)在(2)中的拋物線上是否存在點(diǎn)P,其關(guān)于直線BF的對稱點(diǎn)在x軸上?若有,求出點(diǎn)P的坐標(biāo);
(4)連接OE,若點(diǎn)M是直線BF上的一動(dòng)點(diǎn),且△BMD與△OED相似,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,頂點(diǎn)為(3,4)的拋物線交 y軸與A點(diǎn),交x軸與B、C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),已知A點(diǎn)坐標(biāo)為(0,-5).
(1)求此拋物線的解析式;
(2)過點(diǎn)B作線段AB的垂線交拋物線與點(diǎn)D,如果以點(diǎn)C為圓心的圓與直線BD相切,請判斷拋物線的對稱軸與⊙C的位置關(guān)系,并給出證明.
(3)在拋物線上是否存在一點(diǎn)P,使△ACP是以AC為直角邊的直角三角形.若存在,求點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點(diǎn)為點(diǎn)D,并與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C.
(1)求點(diǎn)A、B、C、D的坐標(biāo);
(2)在y軸的正半軸上是否存在點(diǎn)P,使以點(diǎn)P、O、A為頂點(diǎn)的三角形與△AOC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)取點(diǎn)E(,0)和點(diǎn)F(0,),直線l經(jīng)過E、F兩點(diǎn),點(diǎn)G是線段BD的中點(diǎn).
①點(diǎn)G是否在直線l上,請說明理由;
②在拋物線上是否存在點(diǎn)M,使點(diǎn)M關(guān)于直線l的對稱點(diǎn)在x軸上?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
(2013年四川瀘州12分)如圖,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(﹣2,0),點(diǎn)B的坐標(biāo)為(1,),已知拋物線y=ax2+bx+c(a≠0)經(jīng)過三點(diǎn)A、B、O(O為原點(diǎn)).
(1)求拋物線的解析式;
(2)在該拋物線的對稱軸上,是否存在點(diǎn)C,使△BOC的周長最小?若存在,求出點(diǎn)C的坐標(biāo);若不存在,請說明理由;
(3)如果點(diǎn)P是該拋物線上x軸上方的一個(gè)動(dòng)點(diǎn),那么△PAB是否有最大面積?若有,求出此時(shí)P點(diǎn)的坐標(biāo)及△PAB的最大面積;若沒有,請說明理由.(注意:本題中的結(jié)果均保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com