【題目】如圖,矩形ABCD中,AB=4,AD=3,把矩形沿直線AC折疊,使點B落在點E處,AECD于點F,連接DE.

(1)求證:△DEC≌△EDA;

(2)求DF的值;

(3)在線段AB上找一點P,連結FP使FPAC,連結PC,試判定四邊形APCF的形狀,并說明理由,直接寫出此時線段PF的大。

【答案】(1)證明見解析;(2)DF=;(3)PF=.

【解析】

試題(1)、根據(jù)矩形的可得AD=BCAB=CD,根據(jù)折疊圖形可得BC=ECAE=AB,則可得AD=CE,AE=CD,從而得到三角形全等;(2)、設DF=x,則AF=CF=4x,根據(jù)Rt△ADF的勾股定理求出x的值;(3)、根據(jù)菱形的性質進行求解.

試題解析:(1)矩形ABCD ∴AD=BC,AB=CD,AB∥CD ∴∠ACD=∠CAB

∵△AEC△ABC翻折得到 ∴AB="AE,BC=EC," ∠CAE=∠CAB ∴AD=CE,DC=EA,∠ACD=∠CAE

△ADE△CED∴△DEC≌△EDASSS);

(2)、如圖1,∵∠ACD=∠CAE, ∴AF=CF, 設DF=x,則AF=CF=4﹣x,

RT△ADF中,AD2+DF2=AF2, 即32+x2=4﹣x2, 解得;x=, 即DF=

(3)、四邊形APCF為菱形 設AC、FP相較于點O ∵FP⊥AC ∴∠AOF=∠AOP

∵∠CAE=∠CAB, ∴∠APF=∠AFP ∴AF=AP ∴FC=AP

∵AB∥CD ∴四邊形APCF是平行四邊形 又∵FP⊥AC ∴四邊形APCF為菱形 PF=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

查看答案和解析>>

同步練習冊答案