如圖,梯形ABCD中,AB∥CD,AB=14,AD= 4,CD=7.直線l經(jīng)過A,D兩點,且sin∠DAB=.動點P在線段AB上從點A出發(fā)以每秒2個單位的速度向點B運動,同時動點Q從點B出發(fā)以每秒5個單位的速度沿B→C→D的方向向點D運動,過點P作PM垂直于AB,與折線A→D→C相交于點M,當P,Q兩點中有一點到達終點時,另一點也隨之停止運動.設點P,Q運動的時間為t秒(t>0),△MPQ的面積為S.

(1)求腰BC的長;
(2)當Q在BC上運動時,求S與t的函數(shù)關系式;
(3)在(2)的條件下,是否存在某一時刻t,使得△MPQ的面積S是梯形ABCD面積的?若存在,請求出t的值;若不存在,請說明理由;
(4)隨著P,Q兩點的運動,當點M在線段DC上運動時,設PM的延長線與直線l相交于點N,試探究:當t為何值時,△QMN為等腰三角形?
(1)5;(2)S=﹣5t2+14t(0<t≤1)(3)不存在,理由見解析;(4)t=或t=

試題分析:(1)利用梯形性質確定點D的坐標,利用sin∠DAB=特殊三角函數(shù)值,得到△AOD為等腰直角三角形,求出梯形的高,然后利用勾股定理求出BC有長;
(2)當0<t≤1時,S=×2t×(14﹣5t)=﹣5t2+14t;
(3)在(2)的條件下,不存在某一時刻t,使得△MPQ的面積S是梯形ABCD面積的
(4)△QMN為等腰三角形的情形有兩種,需要分類討論,避免漏解.
試題解析:(1)5 
(2)當0<t≤1時,S=×2t×(14﹣5t)=﹣5t2+14t
(3)梯形ABCD的面積為42
﹣5t2+14t=42程無解,所以△MPQ的面積不能為梯形ABCD的
(4)△QMN為等腰三角形,有兩種情形:
①如圖4所示,點M在線段NM的右側上

MQ=CD-DM-CQ=7-(2t-4)-(5t-5)=16-7t,MN=DM=2t-4,
由MN=MQ,得16-7t=2t-4,解得t=;
②如圖5所示,當Q在MN的左側時,5t-5+(2t-4)-7=(2t-4)+4-4,

解得:t=
故當t=或t=時,△QMN為等腰三角形.
考點: 一次函數(shù)綜合題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

設甲、乙兩車在同一直線公路上勻速行駛,開始甲車在乙車的前面,當乙車追上甲車后,兩車停下來,把乙車的貨物轉給甲車,然后甲車繼續(xù)前行,乙車向原地返回.設x秒后兩車間的距離為y千米,y關于x的函數(shù)關系如圖所示,則甲車的速度是____________米/秒.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知一次函數(shù)y=kx+b的圖象經(jīng)過點A(0,-1),B(1,0),求這個一次函數(shù)的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在同一直角坐標系中反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象相交,且其中一個交點A的坐標為(-2,3),若一次函數(shù)的圖象又與x軸相交于點B,且△AOB的面積為6(點O為坐標原點).求一次函數(shù)與反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,對于任意兩點P1(x1,y1)與P2(x2,y2)的“非常距離”,給出如下定義:
若|x1﹣x2|≥|y1﹣y2|,則點P1與點P2的“非常距離”為|x1﹣x2|;
若|x1﹣x2|<|y1﹣y2|,則點P1與點P2的“非常距離”為|y1﹣y2|.
例如:點P1(1,2),點P2(3,5),因為|1﹣3|<|2﹣5|,所以點P1與點P2的“非常距離”為|2﹣5|=3,也就是圖1中線段P1Q與線段P2Q長度的較大值(點Q為垂直于y軸的直線P1Q與垂直于x軸的直線P2Q交點).
(1)已知點A(﹣,0),B為y軸上的一個動點,
①若點A與點B的“非常距離”為2,寫出一個滿足條件的點B的坐標;
②直接寫出點A與點B的“非常距離”的最小值;
(2)已知C是直線y=x+3上的一個動點,
①如圖2,點D的坐標是(0,1),求點C與點D的“非常距離”的最小值及相應的點C的坐標;
②如圖3,E是以原點O為圓心,1為半徑的圓上的一個動點,求點C與點E的“非常距離”的最小值及相應的點E與點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

一次函數(shù)y=-2x+4的圖象與y軸的交點坐標是( 。
A.(0,4)B.(4,0)
C.(2,0)D.(0,2)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知一次函數(shù)的圖象為直線,則關于的方程的解      

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知點都在一次函數(shù)為常數(shù))的圖象上,則的大小關系是________;若,則___________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知點(-4,y1),(2, y2)都在直線y=-x+2上,則y1與y2大小關系是 (  )
A.y1>y2B.y1=y(tǒng)2
C.y1<y2D.不能比較

查看答案和解析>>

同步練習冊答案