如圖所示,P是邊長為2cm的正方形ABCD的邊AB上不與A,B重合的任意一點,PQ⊥DP,設AP=x(cm),BQ=y(tǒng)(cm).

(1)求y與x之間的函數(shù)表達式,并指出自變量x的取值范圍;

(2)當AP取何值時,BQ有最大值?并求出這個最大值.

答案:
解析:

  (1)yx2x;(0x2);

  (2)AP1cm時,BQ有最大值cm


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,△ABC是邊長為6cm的等邊三角形,被一平行于BC的矩形所截,AB被截成三等分,則圖中陰影部分的面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,P是邊長為1的正三角形ABC的BC邊上一點,從P向AB作垂線PQ,Q為垂足.延長QP與AC的延長線交于R,設BP=x(0≤x≤1),△BPQ與△CPR的面積之和為y,把y表示為x的函數(shù)是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•泰州一模)一個包裝盒的設計方法如圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得ABCD四個點重合于圖中的點P,正好形成一個正四棱柱形狀的包裝盒,E、F在AB上是被切去的等腰直角三角形斜邊的兩個端點,設AE=FB=xcm.若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問x應取的值為
15
15
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•河東區(qū)一模)請你設計一個包裝盒,如圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得ABCD四個點重合于圖中的點P,正好形成一個長方體形狀的包裝盒,E、F在AB上是被切去的等腰直角三角形斜邊的兩個端點.若廣告商要求包裝盒側(cè)面積Scm2最大,試求x應取何值?
設AE=FB=xcm,包裝盒側(cè)面積為Scm2

(I)分析:由正方形硬紙片ABCD的邊長為60cm,AE=FB=xcm,則EF=
(60-2x)
(60-2x)
cm.
為更好地尋找題目中的等量關(guān)系,將剪掉的陰影部分三角形集中,得到邊長為EF的正方形,其面積為
(60-2x)2
(60-2x)2
cm2;折起的四個角上的四個等腰直角三角形的面積之和為
4x2
4x2
cm2
(Ⅱ)由以上分析,用含x的代數(shù)式表示包裝盒的側(cè)面積S,并求出問題的解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,△OAB是邊長為2+
3
的等邊三角形,其中O是坐標原點,頂點A在x軸的正方向上,將△OAB折疊,使點B落在邊OA上,記為B′,折痕為EF.
(1)設OB′的長為x,△OB′E的周長為C,求C關(guān)于x的函數(shù)關(guān)系式;
(2)當B′E∥y軸時,求點B′和點E的坐標;
(3)在(2)的條件下,若拋物線y=-2x2+bx+c的對稱軸是直線B′E,且經(jīng)過原點O,求b、c的值;
(4)當B′在OA上運動但不與O、A重合時,能否使△EB′F成為直角三角形?若能,請求出點B′的坐標;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案