【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(-2,1),B(-1,4),C(-3,2).
(1)以原點(diǎn)O為位似中心,相似比為1∶2,在y軸的左側(cè),畫(huà)出△ABC放大后的圖形△A1B1C1,并直接寫(xiě)出C1點(diǎn)的坐標(biāo);
(2)若點(diǎn)D(a,b)在線段AB上,請(qǐng)直接寫(xiě)出經(jīng)過(guò)(1)的變化后點(diǎn)D的對(duì)應(yīng)點(diǎn)D1的坐標(biāo).
【答案】(1)圖見(jiàn)解析,C1(-6,4);(2)D1(2a,2b).
【解析】試題分析:(1)連接OB并延長(zhǎng),截取BB1=OB,連接OA并延長(zhǎng),截取AA1=0A,連接OC并延長(zhǎng),截取CC1=OC,確定出△A1B1C1,并求出C1點(diǎn)坐標(biāo)即可;
(2)根據(jù)A與A1坐標(biāo),B與B1坐標(biāo),以及C與C1坐標(biāo)的關(guān)系,確定出變化后點(diǎn)D的對(duì)應(yīng)點(diǎn)D1坐標(biāo)即可.
試題解析:
(1)根據(jù)題意畫(huà)出圖形,如圖所示:
則點(diǎn)C1的坐標(biāo)為(-6,4);
(2)變化后D的對(duì)應(yīng)點(diǎn)D1的坐標(biāo)為:(2a,2b).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知射線CB∥OA,∠C=∠OAB,
(1)求證:AB∥OC;
(2)如圖2,E、F在CB上,且滿足∠FOB=∠AOB,OE平分∠COF.
①當(dāng)∠C=110°時(shí),求∠EOB的度數(shù).
②若平行移動(dòng)AB,那么∠OBC :∠OFC的值是否隨之發(fā)生變化?若變化,找出變
化規(guī)律;若不變,求出這個(gè)比值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小梅用兩張同樣大小的長(zhǎng)方形硬紙片拼接成一個(gè)面積為900cm2的正方形,如圖所示,按要求完成下列各小題.
(1)求長(zhǎng)方形硬紙片的寬;
(2)小梅想用該長(zhǎng)方形硬紙片制作一個(gè)體積512cm3的正方體的無(wú)蓋筆筒,請(qǐng)你判斷該硬紙片是否夠用?若夠用,求剩余的硬紙片的面積;若不夠用,求缺少的硬紙片的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將周長(zhǎng)為8的△ABC沿BC方向向右平移1個(gè)單位得到△DEF,則四邊形ABFD的周長(zhǎng)為( )
A.11
B.10
C.9
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知EF⊥AB,垂足為F,CD⊥AB,垂足為D,∠1=∠2,試判斷∠AGD和∠ACB是否相等,為什么?(將解答過(guò)程補(bǔ)充完整) 解:∠AGD=∠ACB.理由如下:
∵EF⊥AB,CD⊥AB(已知)
∴∠EFB=∠CDB=90° ()
∴∥(同位角相等,兩直線平行)
∴∠1=∠ECD()
又∵∠1=∠2(已知)
∴∠ECD=( 等量代換)
∴GD∥CB()
∴∠AGD=∠ACB ().
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,完成下列推理,并填寫(xiě)理由,如圖,∠B=∠D,∠1=∠2,求證:AB∥CD.
【證明】∵∠1=∠2(已知),
∴∥()
∴∠DAB+∠=180°()
∵∠B=∠D(已知)
∴∠DAB+∠=180°()
∴AB∥CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,D是BC邊上一點(diǎn),E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線交CE的延長(zhǎng)線于F,且AF=BD,連接BF.
(1)求證:點(diǎn)D是線段BC的中點(diǎn);
(2)如圖2,若AB=AC=13,AF=BD=5,求四邊形AFBD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙二人從同一地點(diǎn)出發(fā),同向而行,甲乘車,乙步行.如果乙先走20 km,那么甲用1 h就能追上乙;如果乙先走1 h,那么甲只用15 min就能追上乙.求甲、乙二人的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C的坐標(biāo)分別為(6,0)、(0,4),點(diǎn)P是線段BC上的動(dòng)點(diǎn),當(dāng)△OPA是等腰三角形時(shí),則P點(diǎn)的坐標(biāo)是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com