如圖,在等腰梯形ABCD中,AC⊥BD,AC=6cm,則等腰梯形ABCD的面積為 cm2.
18【考點】等腰梯形的性質(zhì).菁優(yōu)網(wǎng)版權所有
【分析】通過作輔助線,把等腰梯形ABCD的面積轉(zhuǎn)化成直角三角形的面積來完成.
【解答】解:方法一:
過點B作BE∥AC,交DC的延長線于點E,又AB∥CE,
∴四邊形ACEB是平行四邊形,又等腰梯形ABCD
∴BE=AC=DB=6cm,AB=CE,
∵AC⊥BD,
∴BE⊥BD,
∴△DBE是等腰直角三角形,
∴S等腰梯形ABCD=
==
=S△DBE=
=6×6÷2
=18(cm2).
方法二:
∵BD是△ADB和△CDB的公共底邊,又AC⊥BD,
∴AC=△ADB的高﹢△CDB的高,
∴梯形ABCD的面積=△ADB面積+△CDB面積=BD×AC=6×=18(cm2).
故答案為:18.
【點評】本題考查了梯形面積的計算,以及它的性質(zhì),還運用了轉(zhuǎn)化的思想.
科目:初中數(shù)學 來源: 題型:
小明騎自行車上學,開始以正常速度勻速行駛,但行至中途時,自行車出了故障,只好停下來修車,車修好后,因怕耽誤上課,他比修車前加快了速度繼續(xù)勻速行駛,下面是行駛路程s(m)關于時間t(min)的函數(shù)圖象,那么符合小明行駛情況的大致圖象是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點A(1,0),頂點為B,且拋物線不經(jīng)過第三象限.
(1)使用a、c表示b;
(2)判斷點B所在象限,并說明理由;
(3)若直線y2=2x+m經(jīng)過點B,且與該拋物線交于另一點C(),求當x≥1時y1的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
一項“過關游戲”規(guī)定:在過第n關時要將一顆質(zhì)地均勻的骰子(六個面上分別刻有1到6的點數(shù))拋擲n次,若n次拋擲所出現(xiàn)的點數(shù)之和大于n2,則算過關;否則不算過關,則能過第二關的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
某過天橋的設計圖是梯形ABCD(如圖所示),橋面DC與地面AB平行,DC=62米,AB=88米.左斜面AD與地面AB的夾角為23°,右斜面BC與地面AB的夾角為30°,立柱DE⊥AB于E,立柱CF⊥AB于F,求橋面DC與地面AB之間的距離(精確到0.1米)sin23°=0.3907,cos23°=0.9205,tan23°=0.4245
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
自然數(shù)4,5,5,x,y從小到大排列后,其中位數(shù)為4,如果這組數(shù)據(jù)唯一的眾數(shù)是5,那么,所有滿足條件的x,y中,x+y的最大值是( 。
A.3 B.4 C.5 D.6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com