已知△ABC中,∠ACB>90°,∠B=25°,CD⊥BC于點C,BD=2AC,點E在BC的延長線上,則∠ACE的大小是________.

75度
分析:先作輔助線CG,再根據(jù)CG=AC證明△ACG是等腰三角形,所以求得∠A和∠B的度數(shù),進而求出∠ACE的度數(shù).
解答:解:如圖:作△BCD的中線CG,
∵△BCD是Rt△,
∴CG=BD,
∵BD=2AC
∴CG=AC,
∴△ACG是等腰三角形,
∴∠A=∠CGA=2∠B=50°,
∴∠ACE=∠A+∠B=75°.
故答案為75度.
點評:本題主要考查了等腰三角形的判定:在同一三角形中,有兩條邊相等的三角形是等腰三角形.利用三角形是等腰三角形的條件求角的度數(shù).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知△ABC中,∠ACB=90°,AC=BC,P、Q分別是邊AB、BC上的動點,且點P不與點A、B重合,點Q不與點B、C重合.
(1)在以下五個結(jié)論中:①∠CQP=45°;②PQ=AC;③以A、P、C為頂點的三角形全等于△PQB;④以A、P、C為頂點的三角形全等于△CPQ;⑤以A、P、C為頂點的三角形相似于△CPQ.一定不成立的是
 
.(只需將結(jié)論的代號填入題中的模線上).
(2)設(shè)AC=BC=1,當CQ的長取不同的值時,△CPQ是否可能為直角三角形?若可能,請說明所有的精英家教網(wǎng)情況;若不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知△ABC中,DE∥BC,EF∥AB,AB=3,BC=6,AD:DB=2:1,則四邊形DBFE的周長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,已知△ABC中,AB=AC,以AB為直徑作⊙O交BC于D,交AC于E,過D作DF⊥AC于F
(1)求證:DF是⊙O的切線;
(2)連接DE,且AB=4,若∠FDC=30°,試求△CDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知△ABC中,AB=3,AC=5,第三邊BC的長為一元二次方程x2-9x+20=0的一個根,則該三角形為
等腰或直角
等腰或直角
三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC中,AB=AC,AB垂直平分線交AC于D,連接BE,若∠A=40°,則∠EBC=(  )

查看答案和解析>>

同步練習冊答案