【題目】在平面直角坐標系中,為坐標原點,直線軸負半軸)軸正半軸于兩點, 的面積為4.5

如圖1.求的值;

如圖2.在軸負半軸上取點.點在第一象限,連接,過點的延長線于點,若,求的值;

如圖3,在的條件下.軸于點軸交的延長線于點,設軸交于點,連接,當時,求點的坐標.

【答案】1;(2;(3

【解析】

1)分別求、坐標,其中的坐標用表示,利用為等量關系即求出的值.

2)由聯(lián)想到在上截取,則有.由條件易證四邊形是正方形,由即得到,有,,通過角度轉換可得.證,即得到,求得

3)要求點坐標,即要求的長,又中,,即求出的長則確定,即求出.由聯(lián)想到給所在的構造全等三角形:過點軸于點,在上截取,連接,通過角度轉換可證,即有.設,,則能用表示、,利用勾股定理列方程即求出的值.求得兩個的值要分別代入計算討論合理性.

解:(1)當時,,解得:

,

時,

,

2)在上截取,連接

軸,

四邊形是矩形

,

,即

矩形是正方形

3)過點軸于點,在上截取,連接

軸,

四邊形是矩形

,

中,

中,

,則

,

中,

解得:

時,

時,,

綜上所述,點坐標為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB2BC10,E、F分別在邊BCAD上,BEDF.將△ABE△CDF分別沿著AE,CF翻折后得到△AGE,△CHF.若AGCH分別平分∠EAD、∠FCB,則GH長為(

A.3B.4C.5D.7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在中,,點邊上的動點(點不與點,重合).以為頂點作,射線邊于點,過點交射線于點,連接

1)求證:;

2)當時(如圖2),求的長;

3)點邊上運動的過程中,是否存在某個位置,使得?若存在,求出此時的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,0為原點,A(4,0),E(0,3),四邊形OABC,四邊形OCDE都為平行四邊形,OC=5,函數(shù)y=(x0)的圖象經(jīng)過AB的中點F和DE的中點G,則k的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1ABC內接于⊙O,直徑ADBC于點E,延長AD至點F,使DF2OD,連接FC并延長交過點A的切線于點G,且滿足AGBC,連接OC,若cosBACBC8

1)求證:CF是⊙O的切線;

2)求⊙O的半徑OC;

3)如圖2,⊙O的弦AH經(jīng)過半徑OC的中點F,連結BH交弦CD于點M,連結FM,試求出FM的長和AOF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018年平昌冬奧會在29日到25日在韓國平昌郡舉行,為了調查中學生對冬奧會比賽項目的了解程度,某中學在學生中做了一次抽樣調查,調查結果共分為四個等級:A、非常了解B、比較了解C、基本了解D、不了解.根據(jù)調查統(tǒng)計結果,繪制了如圖所示的不完整的三種統(tǒng)計圖表.

對冬奧會了解程度的統(tǒng)計表

對冬奧會的了解程度

百分比

A非常了解

10%

B比較了解

15%

C基本了解

35%

D不了解

n%

(1)n=   ;

(2)扇形統(tǒng)計圖中,D部分扇形所對應的圓心角是   ;

(3)請補全條形統(tǒng)計圖;

(4)根據(jù)調查結果,學校準備開展冬奧會的知識競賽,某班要從非常了解程度的小明和小剛中選一人參加,現(xiàn)設計了如下游戲來確定誰參賽,具體規(guī)則是:把四個完全相同的乒乓球標上數(shù)字1,2,3,4然后放到一個不透明的袋中,一個人先從袋中摸出一個球,另一人再從剩下的三個球中隨機摸出一個球,若摸出的兩個球上的數(shù)字和為偶數(shù),則小明去,否則小剛去,請用畫樹狀圖或列表的方法說明這個游戲是否公平.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在水果銷售旺季,某水果店購進一優(yōu)質水果,進價為20元/千克,售價不低于20元/千克,且不超過32元/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量y(千克)與該天的售價x(元/千克)滿足如下表所示的一次函數(shù)關系.

銷售量y(千克)

34.8

32

29.6

28

售價x(元/千克)

22.6

24

25.2

26

(1)某天這種水果的售價為23.5元/千克,求當天該水果的銷售量.

(2)如果某天銷售這種水果獲利150元,那么該天水果的售價為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,點延長線上的一點,過點的切線,切點為,過兩點分別作的垂線,垂足分別為,連接

求證:(1平分;

2)若,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于兩點,是以點為圓心,為半徑的圓上的動點,是線段的中點,連接,則線段的最小值是( )

A.B.C.D.

查看答案和解析>>

同步練習冊答案