【題目】如圖,在中,,,,點為射線上一動點(點不與點重合).
(1)為何值時,最短,求出此時的最小值;
(2)為何值時,,說明理由;
(3)當(dāng)的一個頂點與其內(nèi)心、外心在同一條直線時,直接寫出的長.
【答案】(1),;(2)時,,理由見解析;(3),8,
【解析】
(1)當(dāng)點在點時,,此時最短,根據(jù)勾股定理求解即可;
(2)當(dāng)時,,所以,再根據(jù)已知條件即可判斷;
(3)根據(jù)AB邊固定可以分三種情況進行討論;
解:(1)當(dāng)點在點時,,此時最短.
在中,
∴,
此時
(2)當(dāng)時,,
理由:當(dāng)時,,所以,
又∵,,
∴
(3)當(dāng)點A與內(nèi)心、外心重合,△APB是等腰三角形,C為底邊的中點,
∵,,,
∴,
∴BP=2BC=;
當(dāng)P點與內(nèi)心、外心重合,△APB是以AB、BP為腰的等腰三角形,
∵AB=8,
∴BP=8;
當(dāng)點B與內(nèi)心、外心重合,如圖所示,△APB是以為鈍角的三角形,且AP=PB,作,
則,
∴,
∵BF=4,AB=8,,
∴,
∴BP= ;
故BP的值為,8,.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果點P由B出發(fā)沿BA方向點A勻速運動,同時點Q由A出發(fā)沿AC方向向點C勻速運動,它們的速度均為2cm/s.連接PQ,設(shè)運動的時間為t(單位:s)(0≤t≤4).解答下列問題:
(1)當(dāng)t為何值時,PQ∥BC.
(2)設(shè)△AQP面積為S(單位:cm2),當(dāng)t為何值時,S取得最大值,并求出最大值.
(3)是否存在某時刻t,使線段PQ恰好把△ABC的面積平分?若存在,求出此時t的值;若不存在,請說明理由.
(4)如圖2,把△AQP沿AP翻折,得到四邊形AQPQ′.那么是否存在某時刻t,使四邊形AQPQ′為菱形?若存在,求出此時菱形的面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學(xué)的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等,交易其一,金輕十三兩,問金、銀一枚各重幾何?”意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相同,兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計),問黃金、白銀每枚各種多少兩?設(shè)黃金重兩,每枚白銀重兩,根據(jù)題意可列方程組為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y是x的二次函數(shù),該函數(shù)的圖象經(jīng)過點A(0,5)、B(1,2)、C(3,2).
(1)求該二次函數(shù)的表達(dá)式,畫出它的大致圖象并標(biāo)注頂點及其坐標(biāo);
(2)結(jié)合圖象,回答下列問題:
①當(dāng)1≤x≤4時,y的取值范圍是 ;
②當(dāng)m≤x≤m+3時,求y的最大值(用含m的代數(shù)式表示);
③是否存在實數(shù)m、n(m≠n),使得當(dāng)m≤x≤n時,m≤y≤n?若存在,請求出m、n;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過點A(,0)和點B(1,),與x軸的另一個交點為C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點D在對稱軸的右側(cè),x軸上方的拋物線上,且∠BDA=∠DAC,求點D的坐標(biāo);
(3)在(2)的條件下,連接BD,交拋物線對稱軸于點E,連接AE.
①判斷四邊形OAEB的形狀,并說明理由;
②點F是OB的中點,點M是直線BD的一個動點,且點M與點B不重合,當(dāng)∠BMF=∠MFO時,請直接寫出線段BM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在菱形中,動點從點出發(fā),沿折線運動.設(shè)點經(jīng)過的路程為,的面積為.把看作的函數(shù),函數(shù)的圖象如圖②所示,則圖②中的等于______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若拋物線與軸相交于,兩點,與軸相交于點,直線經(jīng)過點,.
(1)求拋物線的解析式;
(2)點是直線下方拋物線上一動點,過點作軸于點,交于點,連接.
①線段是否有最大值?如果有,求出最大值;如果沒有,請說明理由;
②在點運動的過程中,是否存在點,恰好使是以為腰的等腰三角形?如果存在,請直接寫出點的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場第一次用11000元購進某款拼裝機器人進行銷售,很快銷售一空,商家又用24000元第二次購進同款機器人,所購進數(shù)量是第一次的2倍,但單價貴了10元.
(1)求該商家第一次購進機器人多少個?
(2)若在這兩次機器人的銷售中,該商場全部售完,而且售價都是130元,問該商場總共獲利多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com