已知:如圖Rt△ABD和Rt△BCD如圖放置,∠BAD=∠BCD=90°,連接AC,若AC平分∠DAB,則線段AB、AD、AC有怎樣的數(shù)量關(guān)系?寫出你的猜想,并證明.

AB+AD=AC.
證明如下:過C點(diǎn)分別作AB和AD延長(zhǎng)線的垂線段,垂足分別是E、F.
∵AC平分∠DAB,CE⊥AD,CF⊥AF,
∴CE=CF.
∵∠BAD=∠BCD=90°,
∴∠ABC+∠ADC=360°-90°-90°=180°,
∵∠ADC+∠EDC=180°,
∴∠ABC=∠EDC.
在△CED和△CFB中,
∴△CFB≌△CED(AAS).
∴CB=CD.
延長(zhǎng)AB至G,使BG=AD,連接CG.
∵∠ABC+∠ADC=180°,∠ABC+∠CBG=180°,
∴∠CBG=∠ADC.
在△GBC和△ADC中
∴△GBC≌△ADC(SAS).
∴AC=CG,
∴∠G=∠DAC=∠CAB=45°.
∴∠ACG=90°.
∴AG=AC.
∴AB+AD=AC.
分析:AB+AD=AC.首先過C點(diǎn)分別作AB和AD延長(zhǎng)線的垂線段,垂足分別是E、F,再證明△CFB≌△CED可得CB=CD.延長(zhǎng)AB至G,使BG=AD,連接CG.再證明△GBC≌△ADC可得AC=CG,
∠G=∠DAC=∠CAB=45°,則∠ACG=90°故AG=AC,進(jìn)而得到AB+AD=AC.
點(diǎn)評(píng):此題主要考查了全等三角形的判定與性質(zhì),關(guān)鍵是正確畫出輔助線,證明出∠CAB=45°,∠ACG=90°,再用三角函數(shù)得到AG=AC.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、(1)已知:如圖RT△ABC中,∠ACB=90°,ED垂直平分AC交AB與D,求證:DA=DB=DC.

(2)利用上面小題的結(jié)論,繼續(xù)研究:如圖,點(diǎn)P是△FHG的邊HG上的一個(gè)動(dòng)點(diǎn),PM⊥FH于M,PN⊥FG于N,F(xiàn)P與MN交于點(diǎn)K.當(dāng)P運(yùn)動(dòng)到某處時(shí),MN與FP正好互相垂直,請(qǐng)問此時(shí)FP平分∠HFG嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖Rt△ABC∽R(shí)t△BDC,若AB=3,AC=4.
(1)求BD、CD的長(zhǎng);
(2)過B作BE⊥DC于E,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖Rt△ABC中,∠C=Rt∠,AB=5,BC=4.
(1)求AC的長(zhǎng)度.
(2)有一動(dòng)點(diǎn)P從點(diǎn)C開始沿C→B→A方向以1cm∕s的速度運(yùn)動(dòng),到達(dá)點(diǎn)A后停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.求:
①當(dāng)t為幾秒時(shí),AP平分∠CAB.
②當(dāng)t為幾秒時(shí),△ACP是等腰三角形(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖Rt△ABC中,∠B=90°,AB=BC=8,M在BC上,且BM=2,N是AC上一動(dòng)點(diǎn),則BN+MN的最小值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖Rt△ABD和Rt△BCD如圖放置,∠BAD=∠BCD=90°,連接AC,若AC平分∠DAB,則線段AB、AD、AC有怎樣的數(shù)量關(guān)系?寫出你的猜想,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案