解:(1)連接OA、OE、OB.
∵PA,PB,分別切⊙O于A,B.
∴∠PAO=∠PBO=90°,
∴∠AOB=360°-∠P-∠PAO-∠PBO=360°-40°-90°-90°=140°.
∵CA、CE是圓的切線,
∴∠ACO=∠ECO,∠OAC=∠OEC=90°,
∴∠AOC=∠EOC=
∠AOE,
同理,∠EOD=
∠BOE,
∴∠COD=∠EOC+∠EOD=
∠AOE+
∠BOE=
∠AOB=70°.
(2)∵PA,PB,DC分別切⊙O于A,B,E點,
∴CE=CA,DE=DB,PA=PB.
∴△PCD的周長是:PC+PD+CD=PC+CE+PD+DB=PC+CA+PD+DB=PA+PB=2PA=2×10=20cm.
分析:(1)連接OA、OE、OB,根據(jù)切線的性質(zhì)可以得到:∠PAO=∠PBO=90°,則∠AOB的度數(shù)即可求解,然后利用切線長定理可以證得:∠COD=∠EOC+∠EOD=
∠AOE+
∠BOE=
∠AOB,據(jù)此即可求解;
(2)利用切線長定理可以得到:CE=CA,DE=DB,PA=PB,則△PCD的周長是:PC+PD+CD=PC+CE+PD+DB=PC+CA+PD+DB=PA+PB=2PA,據(jù)此即可求解.
點評:本題考查了圓的切線性質(zhì),以及切線長定理,運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.