設(shè),則下列結(jié)論正確的是 ( )

  AT<1      BT=1        C1<T<2        DT>2

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)將連續(xù)的奇數(shù)1,3,5,7,…,排成如圖所示的數(shù)表,用十字框任意框出5個數(shù).
探究規(guī)律一:設(shè)十字框中間的奇數(shù)為a,則框中五個奇數(shù)之和用含a的代數(shù)式表示為
 

結(jié)論:這說明能被十字框框中的五個奇數(shù)之和一定是自然數(shù)p的奇數(shù)倍,這個自然數(shù)p是
 

探究規(guī)律二:
落在十字框中間且又是第二列的奇數(shù)是15,27,39…則這一列數(shù)可以用代數(shù)式表示為12m+3(m為正整數(shù)),同樣,落在十字框中間且又是第三列,第四列,第五列的奇數(shù)分別可表示為
 

運用規(guī)律:
(1)已知被十字框框中的五個奇數(shù)之和為6025,則十字框中間的奇數(shù)是
 
.這個奇數(shù)落在從左往右第
 
列.
(2)請你寫出一個不能夠框在十字框中間的且大于500的奇數(shù):
 

(3)被十字框框中的五個奇數(shù)之和可能是485嗎?可能是3045嗎?說說你的理由.精英家教網(wǎng)
變通運用:
若把這些奇數(shù)重新排列如右圖,解答下列問題:
(1)下列能被十字框框在中間的奇數(shù)是(
 
 )
A.841   B.1121   C.1263  D.1091
(2)被框在十字框中的五個數(shù)之和可能是1925嗎?說說你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(貴州黔西南卷)數(shù)學(解析版) 題型:解答題

閱讀材料: 小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進行了以下探索:

 設(shè)(其中均為整數(shù)),則有

.這樣小明就找到了一種把部分的式子化為平方式的方法.

請你仿照小明的方法探索并解決下列問題:

均為正整數(shù)時,若,用含m、n的式子分別表示,得       ,      ;

(2)利用所探索的結(jié)論,找一組正整數(shù),填空:        =(        )2;

(3)若,且均為正整數(shù),求的值.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

將連續(xù)的奇數(shù)1,3,5,7,…,排成如圖所示的數(shù)表,用十字框任意框出5個數(shù).
探究規(guī)律一:設(shè)十字框中間的奇數(shù)為a,則框中五個奇數(shù)之和用含a的代數(shù)式表示為______.
結(jié)論:這說明能被十字框框中的五個奇數(shù)之和一定是自然數(shù)p的奇數(shù)倍,這個自然數(shù)p是______.
探究規(guī)律二:
落在十字框中間且又是第二列的奇數(shù)是15,27,39…則這一列數(shù)可以用代數(shù)式表示為12m+3(m為正整數(shù)),同樣,落在十字框中間且又是第三列,第四列,第五列的奇數(shù)分別可表示為______.
運用規(guī)律:
(1)已知被十字框框中的五個奇數(shù)之和為6025,則十字框中間的奇數(shù)是______.這個奇數(shù)落在從左往右第______列.
(2)請你寫出一個不能夠框在十字框中間的且大于500的奇數(shù):______.
(3)被十字框框中的五個奇數(shù)之和可能是485嗎?可能是3045嗎?說說你的理由.
變通運用:
若把這些奇數(shù)重新排列如右圖,解答下列問題:
(1)下列能被十字框框在中間的奇數(shù)是(______。
A.841  B.1121  C.1263 D.1091
(2)被框在十字框中的五個數(shù)之和可能是1925嗎?說說你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

)閱讀材料:

小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如3+=(1+2.善于思考的小明進行了以下探索:

設(shè)a+b=(m+n2(其中a、b、m、n均為整數(shù)),則有a+b=m2+2n2+2mn

∴a=m2+2n2,b=2mn.這樣小明就找到了一種把類似a+b的式子化為平方式的方法.

請你仿照小明的方法探索并解決下列問題:

(1)當a、b、m、n均為正整數(shù)時,若a+b=,用含m、n的式子分別表示a、b,得:a= m2+3n2 ,b= 2mn ;

(2)利用所探索的結(jié)論,找一組正整數(shù)a、b、m、n填空: 4 + 2 =( 1 + 1 2;

(3)若a+4=,且a、m、n均為正整數(shù),求a的值?

查看答案和解析>>

同步練習冊答案