【題目】如圖,點(diǎn) A,B,C 的坐標(biāo)分別是(2,1),(6,1),(3,5),若△A1B1C1 與△ABC 關(guān)于x 軸對稱

1)在平面直角坐標(biāo)系中畫出△A1B1C1,并寫出 A1,B1,C1 三個(gè)點(diǎn)的坐標(biāo)

2)求出△A1B1C1的面積

【答案】1)作圖見解析;A1(2,-1),B1(6,-1),C1(3,-5)

28

【解析】

1)依據(jù)平面直角坐標(biāo)系點(diǎn)關(guān)于x軸的對稱作出A1,B1,C1,順次連接即可得△A1B1C1,并寫出A1,B1,C1的坐標(biāo);

2)按照三角形的面積公式進(jìn)行計(jì)算即可的答案.

解(1)如圖所示:△A1B1C1為所求;A1(2,-1),B1(6,-1),C1(3,-5)

(2)A1(2,-1),B1(6,-1),C1(3,-5)

A1B1=6-2=4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:如圖①,在直角三角形ABC中,∠BAC=90,ADBC于點(diǎn)D,可知:∠BAD=∠C(不需要證明);

(1)特例探究:如圖②,∠MAN=90,射線AE在這個(gè)角的內(nèi)部,點(diǎn)B.C在∠MAN的邊AM、AN上,且AB=AC,CFAE于點(diǎn)F,BDAE于點(diǎn)D.證明:△ABD≌△CAF;

(2)歸納證明:如圖③,點(diǎn)B,C在∠MAN的邊AMAN上,點(diǎn)E,F在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求證:△ABE≌△CAF

(3)拓展應(yīng)用:如圖④,在△ABC中,AB=AC,AB>BC.點(diǎn)D在邊BC上,CD=2BD,點(diǎn)E.F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為18,求△ACF與△BDE的面積之和是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C90°,∠A38°D,E分別為AB,AC上一點(diǎn),將BCD,ADE沿CD,DE翻折,點(diǎn)A,B恰好重合于點(diǎn)P處,則∠ACP_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為1個(gè)單位長度的正方形網(wǎng)格中建立如圖所示的平面直角坐標(biāo)系,ABC的頂點(diǎn)都在格點(diǎn)上,請解答下列問題

1)畫出將ABC向左平移4個(gè)單位長度后得到的圖形A1B1C1,并寫出點(diǎn)C1的坐標(biāo);

2)畫出將ABC關(guān)于原點(diǎn)O對稱的圖形A2B2C2,并寫出點(diǎn)C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某莊有甲、乙兩家草莓采摘園的草莓銷售價(jià)格相同,春節(jié)期間,兩家采摘園將推出優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進(jìn)園需購買門票,采摘的草莓六折優(yōu)惠;乙園的優(yōu)惠方案是:游客進(jìn)園不需購買門票,采摘的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,某游客的草莓采摘量為(千克),在甲園所需總費(fèi)用為(元),在乙園所需總費(fèi)用為(元),之間的函數(shù)關(guān)系如圖所示.

1)甲采摘園的門票是_____,兩個(gè)采摘園優(yōu)惠前的草莓單價(jià)是每千克____

2)當(dāng)時(shí),求的函數(shù)表達(dá)式;

3)游客在“春節(jié)期間”采摘多少千克草莓時(shí),甲、乙兩家采摘園的總費(fèi)用相同.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的面積為3,BDDC21,EAC的中點(diǎn),ADBE相交于點(diǎn)P,那么四邊形PDCE的面積為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料,請回答下列問題

材料一:我國古代數(shù)學(xué)家秦九韶在《數(shù)書九章》中記述了三斜求積術(shù),即已知三角形的三邊長,求它的面積.用現(xiàn)代式子表示即為:S①(其中a,b,c為三角形的三邊長,S為面積)而另一個(gè)文明古國古希臘也有求三角形面積的海倫公式;S……②(其中p

材料二:對于平方差公式:a2b2=(a+b)(ab

公式逆用可得:(a+b)(ab)=a2b2,

例:a2﹣(b+c2=(a+b+c)(abc

1)若已知三角形的三邊長分別為34、5,請?jiān)嚪謩e運(yùn)用公式①和公式②,計(jì)算該三角形的面積;

2)你能否由公式①推導(dǎo)出公式②?請?jiān)囋嚕?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=x2+bx+3的圖象與x軸正半軸交于B、C兩點(diǎn),BC=2,則b的值為( )

A.4 B.﹣4 C.±4 D.﹣5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,它與x軸的兩個(gè)交點(diǎn)分別為(-10),(30).對于下列命題:①b-2a=0;abc0a-2b+4c0;8a+c0.其中正確的有____________。

查看答案和解析>>

同步練習(xí)冊答案