【題目】如圖,等邊△ABC的邊長為4,點O是△ABC的外心,∠FOG=120°.繞點O旋轉(zhuǎn)∠FOG,分別交線段AB、BC于D、E兩點.連接DE給出下列四個結(jié)論:①OD=OE;②S△ODE=S△BDE;③S四邊形ODBE=;④△BDE周長的最小值為6.上述結(jié)論中正確的個數(shù)是( )
A.1B.2C.3D.4
【答案】B
【解析】
連接OB,OC,易證△BOD≌△COE,因為OD=OE,將S四邊形ODBE轉(zhuǎn)化為S△BOC,故可得①③正確;利用特殊時刻:當(dāng)D與B重合時,E與C重合,此時S△ODE>0,而S△BDE=0,故②錯誤;因為△BOD≌△COE,所以BD=EC,所以當(dāng)DE最小時,△BDE周長最小,利用勾股定理求出DE,找到DE的最小值即可解決問題.
如圖,連接OB,OC,過點D作DM⊥BC于M.
(1)∵等邊△ABC的邊長為4,點O是△ABC的外心,∠FOG=120°,
∴易證∠BOD=∠COE,OB=OC,∠DBO=∠ECO=30°,
∴△BOD≌△COE,
∴OD=OE,故①正確;
(2)當(dāng)D與B重合時,E與C重合,
此時S△ODE>0,
而S△BDE=0,故②錯誤;
(3)∵△BOD≌△COE,
∴S四邊形ODBE=S△ODB+S△BOE
=S△OCE+S△BOE
=S△BOC
=S△ABC
=,故③錯誤;
(4)∵△BOD≌△COE,
∴BD=EC,
∴△BDE周長=BD+BE+DE=BC+DE,
∵BC=4,
∴當(dāng)DE最小時,△BDE周長最小.
設(shè)BD=x,則BM=x,DM=x,EC=BD=x,BE=4﹣x,
∴ME=BE﹣BM=4﹣x,
∴由勾股定理得:DE==,
∴DE的最小值為2,
∴△BDE周長的最小值為6,故④正確;
所以①④正確.
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖數(shù)軸的A、B、C三點所表示的數(shù)分別為a、b、c.若|a﹣b|=3,|b﹣c|=5,且原點O與A、B的距離分別為4、1,則關(guān)于O的位置,下列敘述何者正確?( 。
A. 在A的左邊 B. 介于A、B之間 C. 介于B、C之間 D. 在C的右邊
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O為正方形ABCD的中心,BE平分∠DBC交DC于點E,延長BC到點F,使FC=EC,連結(jié)DF交BE的延長線于點H,連結(jié)OH交DC于點G,連結(jié)HC.則以下四個結(jié)論中:①OH∥BF,②GH=BC,③OD=BF,④∠CHF=45°。正確結(jié)論的個數(shù)為( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點B在函數(shù)y=x圖象上,點A在x軸的正半軸上,等腰直角三角形BCD的頂點C在AB上,點D在函數(shù)y=第一象限的圖象上若△OAB與△BCD面積的差為2,則k的值為( )
A.8B.4C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:如圖①,直線l1∥l2,點A、B在直線l1上,點C、D在直線l2上,記△ABC的面積為S1,△ABD的面積為S2,求證:S1=S2.
拓展:如圖②,E為線段AB延長線上一點,BE>AB,正方形ABCD、正方形BEFG均在直線AB同側(cè),求證:△DEG的面積是正方形BEFG面積的一半.
應(yīng)用:如圖③,在一條直線上依次有點A、B、C、D,正方形ABIJ、正方形BCGH、正方形CDEF均在直線AB同側(cè),且點F、H分別是邊CG、BI的中點,若正方形CDEF的面積為l,則△AGI的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市水費采用階梯收費制度,即:每月用水不超過15噸時,每噸需繳納水費a元,每月用水量超過15噸時,超過15噸的部分按每噸提高b元繳納下表是嘉琪家一至四月份用水量和繳納水費情況.根據(jù)表格提供的數(shù)據(jù),回答:
月份 | 一 | 二 | 三 | 四 |
月用水量(噸) | 14 | 18 | 16 | 13 |
水費(元) | 42 | 60 | 50 | 39 |
(1)a= 元;b= 元;
(2)求月繳納水費p(元)與月用水量t(噸)之間的函數(shù)關(guān)系式;
(3)若嘉琪家五月和六月的月繳水費相差24元,求這兩月用水量差的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象交軸于點,交軸于點是直線下方拋物線上一動點.
(1)求這個二次函數(shù)的表達(dá)式;
(2)連接,是否存在點,使面積最大,若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O,點D為⊙O上一點,且CD=CB,連接DO并延長交CB的延長線于點E,連接OC.
(1) 判斷直線CD與⊙O的位置關(guān)系,并說明理由;
(2) 若BE=,DE=3,求⊙O的半徑及AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某日王老師佩戴運動手環(huán)進(jìn)行快走鍛煉兩次鍛煉后數(shù)據(jù)如下表,與第一次鍛煉相比,王老師第二次鍛煉步數(shù)增長的百分率是其平均步長減少的百分率的倍.設(shè)王老師第二次鍛煉時平均步長減少的百分率為.注:步數(shù)平均步長距離.
項目 | 第一次鍛煉 | 第二次鍛煉 |
步數(shù)(步) | ①_______ | |
平均步長(米/步) | ②_______ | |
距離(米) |
(1)根據(jù)題意完成表格;
(2)求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com