【題目】如圖,面積為24的正方形ABCD中,有一個小正方形EFGH,其中E、F、G分別在AB、BC、FD上.若BF= ,則小正方形的周長為( )
A.
B.
C.
D.
【答案】C
【解析】解:∵四邊形ABCD是正方形,面積為24,∴BC=CD=2 ,∠B=∠C=90°,
∵四邊形EFGH是正方形,
∴∠EFG=90°,
∵∠EFB+∠DFC=90°,∠BEF+∠EFB=90°,
∴∠BEF=∠DFC,∵∠EBF=∠C=90°,
∴△BEF∽△CFD,
∴ ,∵BF= ,CF= ,DF= = ,∴ = ,∴EF= ,∴正方形EFGH的周長為 .
故選C.
【考點精析】認真審題,首先需要了解正方形的性質(正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形),還要掌握相似三角形的判定與性質(相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方)的相關知識才是答題的關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠1+∠2=180°,∠B=∠D.說明AB∥CD的理由.
補全下面的說理過程,并在括號內填上適當?shù)睦碛?/span>
解:∵∠1+∠2=180°(已知)
∠2=∠AHB( )
∴ (等量代換)
∴DE∥BF( )
∴∠D=∠ ( )
∵∠ =∠B(等量代換)
∴AB∥CD( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,B,C兩點把線段AD分成4:5:7的三部分,E是線段AD的中點,CD=14厘米.
(1)求EC的長.
(2)求AB:BE的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為了測量出樓房AC的高度,從距離樓底C處60 米的點D(點D與樓底C在同一水平面上)出發(fā),沿斜面坡度為i=1: 的斜坡DB前進30米到達點B,在點B處測得樓頂A的仰角為53°,求樓房AC的高度(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈ ,計算結果用根號表示,不取近似值).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列運算正確的是( 。
A.a2+a3=a5
B.(﹣2a2)3÷( )2=﹣16a4
C.3a﹣1=
D.(2 a2﹣ a)2÷3a2=4a2﹣4a+1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是由若干個棱長為1cm的完全相同的小正方體組成的一個幾何體.
(1)請畫出這個幾何體的三視圖;
(2)在露出的表面上涂上顏色(不含底面),則涂上顏色部分的總面積為 cm2.
(3)如果在這個幾何體上再添加一些相同的小正方體,并保持這個幾何體的三視圖不變,那么最多可以再添加______個小正方體.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各式中:
①由3x=﹣4系數(shù)化為1得x=﹣;
②由5=2﹣x移項得x=5﹣2;
③由 去分母得2(2x﹣1)=1+3(x﹣3);
④由2(2x﹣1)﹣3(x﹣3)=1去括號得4x﹣2﹣3x﹣9=1.
其中正確的個數(shù)有( )
A. 0個 B. 1個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《算法統(tǒng)宗》是中國古代數(shù)學名著,作者是我國明代數(shù)學家程大位.在《算法統(tǒng)宗》中記載:“以繩測井,若將繩三折測之,繩多4尺,若將繩四折測之,繩多1尺,繩長井深各幾何?”
譯文:“用繩子測水井深度,如果將繩子折成三等份,井外余繩4尺;如果將繩子折成四等份,井外余繩1尺.問繩長、井深各是多少尺?”
設井深為x尺,根據(jù)題意列方程,正確的是( 。
A. 3(x+4)=4(x+1) B. 3x+4=4x+1
C. 3(x﹣4)=4(x﹣1) D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,點F在AC的延長線上,且∠CBF= ∠CAB.
(1)求證:直線BF是⊙O的切線;
(2)若AB=5,sin∠CBF= ,求BC和BF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com