某旅游點(diǎn)有50輛自行車供游客租賃使用,管理這些自行車的費(fèi)用為每日115元,根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過(guò)6元,則自行車可以全部租出;若超過(guò)6元,則每超過(guò)1元,租不出去的自行車就增加3輛.為了便于結(jié)算,每輛自行車的日租金x(元)只取整數(shù),并且要求出租自行車一日總收入必須高于這一日的管理費(fèi)用,用y(元)表示出租自行車的日凈收入(即一日中出租自行車的總收入減去管理費(fèi)用后的所得).
(1)求函數(shù)y關(guān)于x的表達(dá)式及其x的范圍;
(2)試問(wèn)當(dāng)每輛自行車的日租金為多少元時(shí),才能使一日的凈收入最多?(必要時(shí)可參考以下數(shù)據(jù)282=784,292=841)

解:(1)當(dāng)x≤6時(shí),y=50x-115,令50x-115>0,解得x>2.3.
∵x∈N,∴x≥3,∴3≤x≤6,且x∈N.
當(dāng)6<x≤20時(shí),y=[50-3(x-6)]x-115=-3x2+68x-115
綜上可知 y=,

(2)當(dāng)3≤x≤6,且x∈N時(shí),∵y=50x-115是增函數(shù),
∴當(dāng)x=6時(shí),ymax=185元.
當(dāng)6<x≤20,x∈N時(shí),y=-3x2+68x-115=
∴當(dāng)=11時(shí),ymax=270元.
綜上所述,當(dāng)每輛自行車日租金定在11元時(shí)才能使日凈收入最多,為270元.
分析:(1)函數(shù)y=f(x)=出租自行車的總收入-管理費(fèi);當(dāng)x≤6時(shí),全部租出;當(dāng)6<x≤20時(shí),每提高1元,租不出去的就增加3輛;所以要分段求出解析式;
(2)由函數(shù)解析式是分段函數(shù),在每一段內(nèi)求出函數(shù)最大值,比較得出函數(shù)的最大值.
點(diǎn)評(píng):本題用分段函數(shù)模型考查了一次函數(shù),二次函數(shù)的性質(zhì)與應(yīng)用,解決問(wèn)題的關(guān)鍵是弄清題意,分清收費(fèi)方式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

同步練習(xí)冊(cè)答案