精英家教網 > 初中數學 > 題目詳情

如圖,直角梯形OABC中,O為坐標原點,OA=OC,點C的坐標是(0,8),以點B為頂點的拋物線y=ax2+bx+c經過原點和x軸上的點A.求拋物線的解析式.

解:∵OA=OC,點C的坐標是(0,8),
∴OA=OC=8,
∴點A的坐標為(8,0),
∵點B是頂點,
∴點B的坐標為(4,8),
由拋物線y=ax2+bx+c經過原點,點A,點B,
列方程組,得,
解得
∴拋物線解析式為
分析:根據題意得,點A,B,O的坐標分別為(8,0),(4,8),(0,0),把點代入解析式,組成方程組即可求得.
點評:此題考查了數形結合思想,考查了二次函數的性質.解題的關鍵是采用待定系數法求函數的解析式.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,直角梯形OABC的直角頂點O是坐標原點,邊OA,OC分別在x軸、y軸的正半軸上,OA∥BC,D是BC上一點,BD=
1
4
OA=
2
,AB=3,∠OAB=45°,E、F分別是線段OA、AB上的兩動點,且始終保持∠DEF=45°.
精英家教網
(1)直接寫出D點的坐標;
(2)設OE=x,AF=y,試確定y與x之間的函數關系;
(3)將△AEF沿一條邊翻折,翻折前后兩個三角形組成的四邊形能否成為菱形?若能,請直接寫出符合條件的x值;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,直角梯形OABF中,∠OAB=∠B=90°,A點在x軸上,雙曲線y=
k
x
過點F,與AB交于E點,連EF,若
BF
OA
=
2
3
,S△BEF=4,則k=
 

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,直角梯形OABC中,∠OAB=∠B=90°,A點在x軸上,雙曲線y=
kx
過點C和AB中點D,若S梯形OABC=6,則該雙曲線的解析式為
 

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,直角梯形OABC的直角頂點O是坐標原點,邊OA,OC分別在x軸、y軸的正半軸上,OA∥BC,D精英家教網是BC上一點,BD=
1
4
OA=
2
,AB=3,∠OAB=45°,E、F分別是線段OA、AB上的兩動點,且始終保持∠DEF=45°.
(1)直接寫出D點的坐標;
(2)設OE=x,AF=y,試確定y與x之間的函數關系;
(3)當△AEF是等腰三角形時,將△AEF沿EF折疊,得到△A'EF,求△A'EF與五邊形OEFBC重疊部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖.直角梯形OABC的直角頂點O是坐標原點,邊OA,OC分別在x軸、y軸的正半軸上.OA∥BC,OA=4
2
,OC=
3
2
2
,
∠OAB=45°,D是BC上一點,CD=
3
2
2
.E、F分別是線段OA、AB上的兩動點,且始終保持∠DEF=45°,設OE=x,AF=y.
(1)AB=
 
,BC=
 
,∠DOE=
 

(2)證明△ODE∽△AEF,并確定y與x之間的函數關系;
(3)當AF=EF時,將△AEF沿EF折疊,得到△A′EF,求△A′EF與五邊形OEFBC重疊部分的面積.
精英家教網

查看答案和解析>>

同步練習冊答案