【題目】如圖,在平面直角坐標系中,拋物線與x軸交于A、D兩點,與y軸交于點B,四邊形OBCD是矩形,點A的坐標為(1,0),點D的坐標為(﹣3,0),點B的坐標為(0,4),已知點E(m,0)是線段DO上的動點,過點E作PE⊥x軸交拋物線于點P,交BC于點G,交BD于點H.

(1)求該拋物線的解析式;
(2)當點P在直線BC上方時,請用含m的代數(shù)式表示PG的長度;
(3)在(2)的條件下,是否存在這樣的點P,使得以P、B、G為頂點的三角形與△DEH相似?若存在,求出此時m的值;若不存在,請說明理由.

【答案】
(1)

解:設拋物線解析式為y=a(x﹣1)(x+3),

把B(0,4)代入得a(﹣1)3=4,解得a=﹣ ,

所以拋物線解析式為y=﹣ (x﹣1)(x+3),

即y=﹣ x2 x+4


(2)

解:當y=4時,﹣ x2 x+4=4,解得x1=0,x2=﹣2,

∴﹣2<m<0,

∵E(m,0),PE⊥x軸,

∴P(m,﹣ m2 m+4),

而BC∥x軸,

∴G(m,4),

∴PG=﹣ m2 m+4﹣4=﹣ m2 m(﹣2<m<0)


(3)

解:∵HE∥OB,

∴△DEH∽△DOB,

∵∠PGB=∠DOB,

∴當 = 時,△PGB∽△BOD,則△PGB∽△HED,

= ,整理得m2+m=0,解得m1=0(舍去),m2=﹣1,

= 時,△PGB∽△DOB,則△PGB∽△DEH,

= ,整理得16m2+23m=0,解得m1=0(舍去),m2=﹣ ,

綜上所述,在(2)的條件下,存在點P,使得以P、B、G為頂點的三角形與△DEH相似,此時m的值為﹣1或﹣


【解析】(1)設交點式y(tǒng)=a(x﹣1)(x+3),然后把B點坐標代入求出a即可得到拋物線解析式;(2)先解方程﹣ x2 x+4=4,解得x1=0,x2=﹣2,則﹣2<m<0,設P(m,﹣ m2 m+4),G(m,4),則可用m表示PG;(3)易得△DEH∽△DOB,則判定△PGB與△BOD,由于∠PGB=∠DOB,根據(jù)相似三角形的判定方法,當 = 時,△PGB∽△BOD,則△PGB∽△HED,當 = 時,△PGB∽△DOB,則△PGB∽△DEH,然后分別利用相似比列關(guān)于m的方程,再解方程求出m,從而得到滿足條件的m的值.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,AB為直徑,點C為圓上一點,將劣弧沿弦AC翻折交AB于點D,連結(jié)CD.若點D與圓心O不重合,∠BAC=25°,則∠DCA的度數(shù)為度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一元一次不等式組 的解集在數(shù)軸上表示出來,正確的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為籌備校慶活動,準備印制一批校慶紀念冊,該紀念冊每冊需要108K大小的紙,其中4張為彩色頁,6張為黑白頁.印制該紀念冊的總費用由制版費和印刷費兩部分組成,制版費與印數(shù)無關(guān),價格為:彩色頁300/張,黑白頁50/張;印刷費與印數(shù)的關(guān)系見表.

印數(shù)a。▎挝唬呵裕

1≤a<5

5≤a<10

彩色。▎挝唬涸/張)

2.2

2.0

黑白(單位:元/張)

0.7

0.6

(1)直接寫出印制這批紀念冊的制版費為多少元;

(2)若印制6千冊,那么共需多少費用?

(3)如印制x(1≤x<10)千冊,所需費用為y元,請寫出yx之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,一元二次方程x2=﹣1沒有實數(shù)根,即不存在一個實數(shù)的平方等于﹣1.若我們規(guī)定一個新數(shù)“i”,使其滿足i2=﹣1(即方程x2=﹣1有一個根為i).并且進一步規(guī)定:一切實數(shù)可以與新數(shù)進行四則運算,且原有運算律和運算法則仍然成立,于是有i1=i,i2=﹣1,i3=i2i=﹣i,i4=(i22=(﹣1)2=1,從而對于任意正整數(shù)n,我們可以得到i4n+1=i4ni=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1.

計算:(1)i.i2.i3.i4
2i+i2+i3+i4+…+i2017+i2018

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】給下面命題的說理過程填寫依據(jù).

已知:如圖,直線AB,CD相交于點OEOCD,垂足為O,OF平分BOD,對EOFBOC說明理由.

理由:因為AOCBOD( ),

BOFBOD( )

所以BOFAOC( )

因為AOC180°BOC( )

所以BOF90°BOC.

因為EOCD( ),

所以COE90°( )

因為BOECOEBOC( )

所以BOEBOCCOE.

所以BOEBOC90°( )

因為EOFBOEBOF( )

所以EOF(BOC90°)(90°BOC)

所以EOFBOC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一個用硬紙板制作的長方體包裝盒展開圖已知它的底面形狀是正方形,高為12cm

(1)制作這樣的包裝盒需要多少平方厘米的硬紙板?

(2)1平方米硬紙板價格為5則制作10個這的包裝盒需花費多少錢?(不考慮邊角損耗)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=2x-4

(1)畫出函數(shù)的圖象;

(2)判斷點A(1,-2),B(2,1)是否在該函數(shù)的圖象上.

(3)已知點A(-2,b)在該函數(shù)圖像上,求b值;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+3的圖象與反比例y= (k為常數(shù),且k≠0)的圖象交于A(1,a),B兩點.

(1)求反比例函數(shù)的表達式及點B的坐標;
(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標.

查看答案和解析>>

同步練習冊答案