在平面直角坐標系中,二次函數(shù))的圖象與軸正半軸交于A點.
(1)求證:該二次函數(shù)的圖象與x軸必有兩個交點;
(2)設該二次函數(shù)的圖象與x軸的兩個交點中右側的交點為點B,若∠ABO=45°,將直線AB向下平移2個單位得到直線l,求直線l的解析式;
(3)在(2)的條件下,設M(p,q)為二次函數(shù)圖象上的一個動點,當時,點M關于x軸的對稱點都在直線l的下方,求m的取值范圍.
(1)證明見解析;(2);(3)

試題分析:(1)根據(jù)二次函數(shù)與一元二次方程的關系,要證明二次函數(shù)的圖象與x軸有兩個交點,只要對應的一元二次方程根的判別式大于0即可.
(2)求出直線AB的解析式,根據(jù)平移的性質即可得直線l的解析式.
(3)求出點M關于x軸的對稱點所在的二次函數(shù)解析式,由其在直線l的下方求出m的取值范圍.
試題解析:(1)令,則
.
∵二次函數(shù)圖象與y軸正半軸交于A點,
,且.
,∴.
.
∴該二次函數(shù)的圖象與x軸必有兩個交點.
(2)令,解得:
由(1)得,故B的坐標為(1,0).
又因為∠ABO=45°,所以,即.
則可求得直線AB的解析式為.
再向下平移2個單位可得到直線
(3)由(2)得二次函數(shù)的解析式為
∵M(p,q)為二次函數(shù)圖象上的一個動點,
.
∴點M關于x軸的對稱點的坐標為.
∴點在二次函數(shù)上.
∵當時,點M關于x軸的對稱點都在直線l的下方,
時,;當時,.
結合圖象可知:,
解得:.
的取值范圍為
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,拋物線y=ax2+bx+c(a>0)的頂點為M,直線y=m與x軸平行,且與拋物線交于點A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點之間的部分與線段AB圍成的圖形稱為該拋物線對應的準蝶形,線段AB稱為碟寬,頂點M稱為碟頂,點M到線段AB的距離稱為碟高.
(1)拋物線y=x2對應的碟寬為   ;拋物線y=4x2對應的碟寬為   ;拋物線y=ax2(a>0)對應的碟寬為  ;拋物線y=a(x﹣2)2+3(a>0)對應的碟寬為  ;
(2)拋物線y=ax2﹣4ax﹣(a>0)對應的碟寬為6,且在x軸上,求a的值;
(3)將拋物線y=anx2+bnx+cn(an>0)的對應準蝶形記為Fn(n=1,2,3…),定義F1,F(xiàn)2,…,F(xiàn)n為相似準蝶形,相應的碟寬之比即為相似比.若Fn與Fn﹣1的相似比為,且Fn的碟頂是Fn﹣1的碟寬的中點,現(xiàn)將(2)中求得的拋物線記為y1,其對應的準蝶形記為F1
①求拋物線y2的表達式;
②若F1的碟高為h1,F(xiàn)2的碟高為h2,…Fn的碟高為hn,則hn=  ,F(xiàn)n的碟寬有端點橫坐標為 2 ;F1,F(xiàn)2,…,F(xiàn)n的碟寬右端點是否在一條直線上?若是,直接寫出該直線的表達式;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

小明動手做了一個質地均勻、六個面完全相同的正方體,,分別標有整數(shù)-2、-1、0、1、2、3,且每個面和它所相對的面的數(shù)字之和均相等,小明向上拋擲該正方體,落地后正方體正面朝上數(shù)字作為為點的橫坐標,將它所對的面的數(shù)字作為點的縱坐標,則點落在拋物線軸所圍成的區(qū)域內(不含邊界)的概率是      

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

定義1:在△ABC中,若頂點A,B,C按逆時針方向排列,則規(guī)定它的面積為“有向面積”;若頂點A,B,C按順時針方向排列,則規(guī)定它的面積的相反數(shù)為△ABC的“有向面積”.“有向面積”用表示,例如圖1中,,圖2中,.
定義2:在平面內任取一個△ABC和點P(點P不在△ABC的三邊所在直線上),稱有序數(shù)組(,)為點P關于△ABC的“面積坐標”,記作,例如圖3中,菱形ABCD的邊長為2,,則,點G關于△ABC的“面積坐標”.在圖3中,我們知道,利用“有向面積”,我們也可以把上式表示為:.
應用新知:
(1)如圖4,正方形ABCD的邊長為1,則        ,點D關于△ABC的“面積坐標”是       ;探究發(fā)現(xiàn):
(2)在平面直角坐標系中,點,
①若點P是第二象限內任意一點(不在直線AB上),設點P關于的“面積坐標”為,
試探究之間有怎樣的數(shù)量關系,并說明理由;
②若點是第四象限內任意一點,請直接寫出點P關于的“面積坐標”(用x,y表示);
解決問題:
(3)在(2)的條件下,點,點Q在拋物線上,求當的值最小時,點Q的橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸是直線x=1,則下列四個結論錯誤的是(  )
A.c>0 B.2a+b=0C.b2﹣4ac>0 D.a﹣b+c>0

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在矩形ABCD中,AB=2,點E在邊AD上,∠ABE=45°,BE=DE,連接BD,點P在線段DE上,過點P作PQ∥BD交BE于點Q,連接QD.設PD=x,△PQD的面積為y,則能表示y與x函數(shù)關系的圖象大致是(  )

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

二次函數(shù)的頂點坐標為          .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

當-2≤x≤l時,二次函數(shù)有最大值4,則實數(shù)m的值為(  )
(A)     (B)   (c)2或  (D)2或

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下面說法錯誤的是( 。
A.直線y=x就是一、三象限的角平分線
B.反比例函數(shù)y=
2
x
的圖象經過點(1,2)
C.函數(shù)y=3x-10中,y隨x的增大而減小
D.拋物線y=x2-2x+1的對稱軸是x=1

查看答案和解析>>

同步練習冊答案