【題目】如圖①,已知線段 AB12cm,點(diǎn) C AB 上的一個(gè)動(dòng)點(diǎn),點(diǎn) DE 分別是 AC BC的中點(diǎn).

1)若 AC4cm,求 DE 的長(zhǎng).

2)若 ACacm(不超過(guò) 12cm),求 DE 的長(zhǎng).

3)知識(shí)遷移:如圖②,已知∠AOB120°,過(guò)角的內(nèi)部任意一點(diǎn) C 畫(huà)射線OC,若OD,OE 分別平分∠AOC 和∠BOC,求∠DOE 的度數(shù).

【答案】16

26

360°

【解析】

1)由AB12cmAC4cm,即可推出BC=8cm,然后根據(jù)點(diǎn) D,E 分別是 AC BC的中點(diǎn),即可推出CD=2cm,CE=4cm,即可推出DE的長(zhǎng)度.

2)由ACacm,可知BC=AB-AC=12-a,再根據(jù)點(diǎn) D,E 分別是 AC BC的中點(diǎn),可推出DE=CD+CE=AC+BC),即可求解.

3)由ODOE 分別平分∠AOC 和∠BOC,可推出,即可求解.

1)∵AB12cm,AC4cm,

BC=8cm

∵點(diǎn) D,E 分別是 AC BC的中點(diǎn),

CD=2cmCE=4cm,

DE=6cm.

2)∵ACacm,

BC=AB-AC=12-a

∵點(diǎn) D,E 分別是 AC BC的中點(diǎn),

DE=CD+CE=AC+BC=a+12-a =6cm,

(3)∵OD,OE 分別平分∠AOC 和∠BOC,

∵∠AOB120°,

60°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD的邊ABx軸上,點(diǎn)C的坐標(biāo)為(﹣54),點(diǎn)Dy軸的正半軸上,經(jīng)過(guò)點(diǎn)A的直線yx1y軸交于點(diǎn)E,將直線AE沿y軸向上平移nn0)個(gè)單位長(zhǎng)度后,得到直線l,直線l經(jīng)過(guò)點(diǎn)C時(shí)停止平移.

1)點(diǎn)A的坐標(biāo)為   ,點(diǎn)B的坐標(biāo)為   ;

2)若直線ly軸于點(diǎn)F,連接CF,設(shè)△CDF的面積為S(這里規(guī)定:線段是面積為0的三角形),求Sn之間的函數(shù)關(guān)系式,并寫(xiě)出n的取值范圍;

3)易知AEAD于點(diǎn)A,若直線l交折線ADDC于點(diǎn)P,當(dāng)△AEP為直角三角形時(shí),請(qǐng)直接寫(xiě)出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,數(shù)軸上有A、B、C三點(diǎn),且AB=3BC,若B為原點(diǎn),A點(diǎn)表示數(shù)為6.

(1)求C點(diǎn)表示的數(shù);

(2)若數(shù)軸上有一動(dòng)點(diǎn)P,以每秒1個(gè)單位的速度從點(diǎn)C向點(diǎn)A勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,請(qǐng)用含t的代數(shù)式表示PB的長(zhǎng);

(3)在(2)的條件下,點(diǎn)P運(yùn)動(dòng)的同時(shí)有一動(dòng)點(diǎn)Q從點(diǎn)A以每秒2個(gè)單位的速度向點(diǎn)C勻速運(yùn)動(dòng),當(dāng)P、Q兩點(diǎn)相距2個(gè)單位長(zhǎng)度時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把邊長(zhǎng)為2的等邊三角形△ABC沿直線BC向右平移,使點(diǎn)B與點(diǎn)C重合,得到△DCE,連接BD,交AC于點(diǎn)F

1)證明:AC⊥BD;

2)求線段BD的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,把ABC 先沿 x 軸翻折,再向右平移 3 個(gè)單位得到ABC 現(xiàn)把這兩步 操作規(guī)定為一種變換.如圖,已知等邊三角形 ABC 的頂點(diǎn) BC 的坐標(biāo)分別是(1,1)、(3,1), 把三角形經(jīng)過(guò)連續(xù) 5 次這種變換得到三角形ABC,則點(diǎn) A 的對(duì)應(yīng)點(diǎn) A 的坐標(biāo)是(

A.5,﹣B.14,1+C.17,﹣1D.201+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD邊長(zhǎng)為3,連接ACAE平分CAD,交BC的延長(zhǎng)線于點(diǎn)EFAAE,交CB延長(zhǎng)線于點(diǎn)F,則EF的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】水果店張阿姨以每斤4元的價(jià)格購(gòu)進(jìn)某種水果若干斤,然后以每斤6元的價(jià)格出售,每天可售出150斤,通過(guò)調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出30斤,為保證每天至少售出360斤,張阿姨決定降價(jià)銷售.

1)若將這種水果每斤的售價(jià)降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利450元,張阿姨需將每斤的售價(jià)降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察如圖圖形,把一個(gè)三角形分別連接其三邊中點(diǎn),構(gòu)成4個(gè)小三角形,挖去中間的一個(gè)小三角形(如圖1),對(duì)剩下的三個(gè)小三角形再分別重復(fù)以上做法,……,據(jù)此解答下面的問(wèn)題

(1)填寫(xiě)下表:

圖形

挖去三角形的個(gè)數(shù)

圖形1

1

圖形2

1+3

圖形3

1+3+9

圖形4

   

(2)根據(jù)這個(gè)規(guī)律,求圖n中挖去三角形的個(gè)數(shù)wn;(用含n的代數(shù)式表示)

(3)若圖n+1中挖去三角形的個(gè)數(shù)為wn+1,求wn+1﹣Wn

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為推廣陽(yáng)光體育大課間活動(dòng),我市某中學(xué)決定在學(xué)生中開(kāi)設(shè)A:實(shí)心球,B:立定跳遠(yuǎn),C:跳繩,D:跑步四種活動(dòng)項(xiàng)目.為了了解學(xué)生對(duì)四種項(xiàng)目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中的信息解答下列問(wèn)題:

1在這項(xiàng)調(diào)查中,共調(diào)查了多少名學(xué)生?

2請(qǐng)計(jì)算本項(xiàng)調(diào)查中喜歡立定跳遠(yuǎn)的學(xué)生人數(shù)和所占百分比,并將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;

3若調(diào)查到喜歡跳繩5名學(xué)生中有3名男生,2名女生.現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生.請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案