【題目】如圖,已知拋物線y=ax2+2x+8與x軸交于A,B兩點,與y軸交于點C,且B(4,0).
(1)求拋物線的解析式及其頂點D的坐標;
(2)如果點P(p,0)是x軸上的一個動點,則當|PC﹣PD|取得最大值時,求p的值;
(3)能否在拋物線第一象限的圖象上找到一點Q,使△QBC的面積最大,若能,請求出點Q的坐標;若不能,請說明理由.
【答案】(1) y=﹣(x﹣1)2+9 ,D(1,9); (2)p=﹣8;(3)存在點Q(2,8)使△QBC的面積最大.
【解析】
(1)把點B的坐標代入y=ax2+2x+8求得a的值,即可得到該拋物線的解析式,再把所得解析式配方化為頂點式,即可得到拋物線頂點D的坐標;
(2)由題意可知點P在直線CD上時,|PC﹣PD|取得最大值,因此,求得點C的坐標,再求出直CD的解析式,即可求得符合條件的點P的坐標,從而得到p的值;
(3)由(1)中所得拋物線的解析式設點Q的坐標為(m,﹣m2+2m+8)(0<m<4),然后用含m的代數(shù)式表達出△BCQ的面積,并將所得表達式配方化為頂點式即可求得對應點Q的坐標.
(1)∵拋物線y=ax2+2x+8經過點B(4,0),
∴16a+8+8=0,
∴a=﹣1,
∴拋物線的解析式為y=﹣x2+2x+8=﹣(x﹣1)2+9,
∴D(1,9);
(2)∵當x=0時,y=8,
∴C(0,8).
設直線CD的解析式為y=kx+b.
將點C、D的坐標代入得:,解得:k=1,b=8,
∴直線CD的解析式為y=x+8.
當y=0時,x+8=0,解得:x=﹣8,
∴直線CD與x軸的交點坐標為(﹣8,0).
∵當P在直線CD上時,|PC﹣PD|取得最大值,
∴p=﹣8;
(3)存在,
理由:如圖,由(2)知,C(0,8),
∵B(4,0),
∴直線BC的解析式為y=﹣2x+8,
過點Q作QE∥y軸交BC于E,
設Q(m,﹣m2+2m+8)(0<m<4),則點E的坐標為:(m,﹣2m+8),
∴EQ=﹣m2+2m+8﹣(﹣2m+8)=﹣m2+4m,
∴S△QBC=(﹣m2+4m)×4=﹣2(m﹣2)2+8,
∴m=2時,S△QBC最大,此時點Q的坐標為:(2,8).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,AD⊥CD于點D.E是AB延長線上一點,CE交⊙O于點F,連結OC,AC.
(1)求證:AC平分∠DAO;
(2)若∠DAO=105°,∠E=30°.①求∠OCE的度數(shù).②若⊙O的半徑為,求線段EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AOOM,OA=8,點B為射線OM上的一個動點,分別以OB、AB為直角邊,B為直角頂點,在OM兩側作等腰Rt△OBF、等腰Rt△ABE,連接EF交OM于P點,當點B在射線OM上移動時,PB的長度是 ( )
A. 3.6 B. 4 C. 4.8 D. PB的長度隨B點的運動而變化
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD,等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,連接DF.
(1)試說明AC=EF;
(2)求證:四邊形ADFE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠AOB的大小為α,P是∠AOB內部的一個定點,且OP=2,點E、F分別是OA、OB上的動點,若△PEF周長的最小值等于2,則α=( )
A. 30°B. 45°C. 60°D. 15°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)如圖所示,下列結論中:
①4ac-b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠-1).
其中正確的結論有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“垃圾不落地,城市更美麗”.某中學為了了解七年級學生對這一倡議的落實情況,學校安排政教處在七年級學生中隨機抽取了部分學生,并針對學生“是否隨手丟垃圾”這一情況進行了問卷調查,統(tǒng)計結果為:A為從不隨手丟垃圾;B為偶爾隨手丟垃圾;C為經常隨手丟垃圾三項.要求每位被調查的學生必須從以上三項中選一項且只能選一項.現(xiàn)將調查結果繪制成以下來不辜負不完整的統(tǒng)計圖.
請你根據以上信息,解答下列問題:
(1)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;
(2)所抽取學生“是否隨手丟垃圾”情況的眾數(shù)是 ;
(3)若該校七年級共有1500名學生,請你估計該年級學生中“經常隨手丟垃圾”的學生約有多少人?談談你的看法?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,過邊長為3的等邊△ABC的邊AB上一點P,作PE⊥AC于E,Q為BC延長線上一點,當PA=CQ時,連PQ交AC邊于D,則DE的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A,P,B,C是半徑為8的⊙O上的四點,且滿足∠BAC=∠APC=60°,
(1)求證:△ABC是等邊三角形;
(2)求圓心O到BC的距離OD.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com