分析 (1)根據(jù)題意作輔助線(xiàn)過(guò)點(diǎn)B作BC⊥y軸于點(diǎn)C,根據(jù)等邊三角形的性質(zhì)即可求出點(diǎn)B的坐標(biāo),
(2)根據(jù)∠PAQ=∠OAB=60°,可知∠PAO=∠QAB,得出△APO≌△AQB總成立,得出當(dāng)點(diǎn)P在x軸上運(yùn)動(dòng)(P不與Q重合)時(shí),∠ABQ為定值90°,
(3)根據(jù)點(diǎn)P在x的正半軸還是負(fù)半軸兩種情況討論,再根據(jù)全等三角形的性質(zhì)即可得出結(jié)果.
(4)若點(diǎn)T為平面直角坐標(biāo)系內(nèi)一點(diǎn),且△TOA,△TOB,△TAB均為等腰三角形,則T在OA、OB、OC的垂直平分線(xiàn)上,如圖4所示,然后通過(guò)解直角三角形即可求得T的坐標(biāo).
解答 解:(1)過(guò)點(diǎn)B作BC⊥y軸于點(diǎn)C,如圖1,
∵A(0,2),△AOB為等邊三角形,
∴AB=OB=2,∠BAO=60°,
∴BC=$\sqrt{3}$,OC=AC=1,即B($\sqrt{3},1$);
拋物線(xiàn)的解析式為y=-$\frac{1}{3}$x2+2;
(2)不改變.
如圖2,當(dāng)點(diǎn)P在x軸上運(yùn)動(dòng)(P不與O重合)時(shí),不失一般性,
∵∠PAQ=∠OAB=60°,
∴∠PAO=∠QAB,
在△APO和△AQB中,
$\left\{\begin{array}{l}{AP=AQ}\\{∠PAO=∠QAB}\\{AO=AB}\end{array}\right.$
∴△APO≌△AQB,
∴∠ABQ=∠AOP=90°總成立,
∴當(dāng)點(diǎn)P在x軸上運(yùn)動(dòng)(P不與Q重合)時(shí),∠ABQ為定值90°.
(3)由(2)可知,點(diǎn)Q總在過(guò)點(diǎn)B且與AB垂直的直線(xiàn)上,可見(jiàn)AO與BQ不平行.
①當(dāng)點(diǎn)P在x軸負(fù)半軸上時(shí),點(diǎn)Q在點(diǎn)B的下方,如圖2,
此時(shí),若AB∥OQ,四邊形AOQB即是梯形,
當(dāng)AB∥OQ時(shí),∠BQO=90°,∠BOQ=∠ABO=60°.
又OB=OA=2,可求得BQ=$\sqrt{3}$,
由(2)可知,△APO≌△AQB,
∴OP=BQ=$\sqrt{3}$,
∴此時(shí)P的坐標(biāo)為(-$\sqrt{3}$,0).
②當(dāng)點(diǎn)P在x軸正半軸上時(shí),點(diǎn)Q在B的上方,如圖3,
此時(shí),若AQ∥OB,四邊形AOBQ即是梯形,
當(dāng)AQ∥OB時(shí),∠ABQ=90°,∠QAB=∠ABO=60°.
又AB=2,可求得BQ=2$\sqrt{3}$,
由(2)可知,△APO≌△AQB,
∴OP=BQ=2$\sqrt{3}$,
∴此時(shí)P的坐標(biāo)為(2$\sqrt{3}$,0).
綜上,P的坐標(biāo)為(-$\sqrt{3}$,0)或(2$\sqrt{3}$,0).
(4)若點(diǎn)T為平面直角坐標(biāo)系內(nèi)一點(diǎn),且△TOA,△TOB,△TAB均為等腰三角形,則T在OA、OB、OC的垂直平分線(xiàn)上,如圖4所示,
∵A(0,2),($\sqrt{3}$,1),
∴T1($\sqrt{3}$-2,1),T2(1,2-$\sqrt{3}$),T3(1,$\sqrt{3}$),T4($\frac{\sqrt{3}}{3}$,1).
故T點(diǎn)的坐標(biāo)為($\sqrt{3}$-2,1)或(1,2-$\sqrt{3}$)或(1,$\sqrt{3}$)或($\frac{\sqrt{3}}{3}$,1).
點(diǎn)評(píng) 本題是二次函數(shù)的綜合題,主要考查了等腰三角形的判定和性質(zhì)、等邊三角形的性質(zhì)、梯形的判定和性質(zhì)以及全等三角形的判定及性質(zhì),難度適中.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 10秒 | B. | 8秒 | C. | 6秒 | D. | 5秒 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com