【題目】如圖,AB是⊙O的直徑,D、E為⊙O上位于AB異側(cè)的兩點(diǎn),連接BD并延長(zhǎng)至點(diǎn)C,使得CD=BD,連接AC交⊙O于點(diǎn)F,連接AE、DE、DF.
(1)證明:∠E=∠C;
(2)若∠E=55°,求∠BDF的度數(shù);
(3)設(shè)DE交AB于點(diǎn)G,若DF=4,cosB=,E是弧AB的中點(diǎn),求EGED的值.
【答案】(1)見解析;(2)∠BDF=110°;(3)18
【解析】試題解析:(1)直接利用圓周角定理得出AD⊥BC,勁兒利用線段垂直平分線的性質(zhì)得出AB=AC,即可得出∠E=∠C;
(2)利用圓內(nèi)接四邊形的性質(zhì)得出∠AFD=180°﹣∠E,進(jìn)而得出∠BDF=∠C+∠CFD,即可得出答案;
(3)根據(jù)cosB=,得出AB的長(zhǎng),再求出AE的長(zhǎng),進(jìn)而得出△AEG∽△DEA,求出答案即可.
試題解析:(1)證明:連接AD,∵AB是⊙O的直徑,∴∠ADB=90°,即AD⊥BC,∵CD=BD,∴AD垂直平分BC,∴AB=AC,∴∠B=∠C,又∵∠B=∠E,∴∠E=∠C;
(2)解:∵四邊形AEDF是⊙O的內(nèi)接四邊形,∴∠AFD=180°﹣∠E,又∵∠CFD=180°﹣∠AFD,∴∠CFD=∠E=55°,又∵∠E=∠C=55°,∴∠BDF=∠C+∠CFD=110°;
(3)解:連接OE,∵∠CFD=∠E=∠C,∴FD=CD=BD=4,在Rt△ABD中,cosB=,BD=4,∴AB=6,∵E是的中點(diǎn),AB是⊙O的直徑,∴∠AOE=90°,∵AO=OE=3,∴AE=,∵E是的中點(diǎn),∴∠ADE=∠EAB,∴△AEG∽△DEA,∴,即EGED==18.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐
問題情境
數(shù)學(xué)活動(dòng)課上,老師讓同學(xué)們以“三角形平移與旋轉(zhuǎn)”為主題開展數(shù)學(xué)活動(dòng),和是兩個(gè)等邊三角形紙片,其中,.
解決問題
(1)勤奮小組將和按圖1所示的方式擺放(點(diǎn)在同一條直線上) ,連接.發(fā)現(xiàn),請(qǐng)你給予證明;
(2)如圖2,創(chuàng)新小組在勤奮小組的基礎(chǔ)上繼續(xù)探究,將繞著點(diǎn)逆時(shí)針方向旋轉(zhuǎn),當(dāng)點(diǎn)恰好落在邊上時(shí),求的面積;
拓展延伸
(3)如圖3,縝密小組在創(chuàng)新小組的基礎(chǔ)上,提出一個(gè)問題: “將沿方向平移得到連接,當(dāng)恰好是以為斜邊的直角三角形時(shí),求的值.請(qǐng)你直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館有50個(gè)房間供游客住宿,當(dāng)每個(gè)房間的房?jī)r(jià)為每天180元時(shí),房間會(huì)全部住滿.當(dāng)每個(gè)房間 每天的房?jī)r(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑.賓館需對(duì)游客居住的每個(gè)房間每天支出20元的各種費(fèi)用.根據(jù)規(guī)定,每個(gè)房間每天的房?jī)r(jià)不得高于340元.設(shè)每個(gè)房間的房?jī)r(jià)增加x元(x為10的正整數(shù)倍).
(1)設(shè)一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)設(shè)賓館一天的利潤(rùn)為w元,求w與x的函數(shù)關(guān)系式;
(3)一天訂住多少個(gè)房間時(shí),賓館的利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)推出兩種優(yōu)惠方法,甲種方法:購(gòu)買一個(gè)書包贈(zèng)送一支筆;乙種方法:購(gòu)買書包和筆一律按九折優(yōu)惠,書包20元/個(gè),筆5元/支,小明和同學(xué)需購(gòu)買4個(gè)書包,筆若干(不少于4支).
(1)分別寫出兩種方式購(gòu)買的費(fèi)用y(元)與所買筆支數(shù)x(支)之間的函數(shù)關(guān)系式;
(2)如果商場(chǎng)允許可以任意選擇一種優(yōu)惠方式,也可以同時(shí)用兩種方式購(gòu)買,請(qǐng)你就購(gòu)買4個(gè)書包12支筆,設(shè)計(jì)一種最省錢的購(gòu)買方式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A城氣象臺(tái)測(cè)得臺(tái)風(fēng)中心在A城正西方向600km的B處,以每小時(shí)200km的速度向北偏東60°的方向移動(dòng),距臺(tái)風(fēng)中心500km的范圍內(nèi)是受臺(tái)風(fēng)影響的區(qū)域.
(1)A城是否受到這次臺(tái)風(fēng)的影響?為什么?
(2)若A城受到這次臺(tái)風(fēng)的影響,那么A城遭受這次臺(tái)風(fēng)影響有多長(zhǎng)時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用四塊完全相同的小長(zhǎng)方形拼成的一個(gè)“回形”正方形.
(1)用不同代數(shù)式表示圖中的陰影部分的面積,你能得到怎樣的等式:________;
(2)利用(1)中的結(jié)論.計(jì)算:,,求的值;
(3)根據(jù)(1)的結(jié)論.若.求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
一個(gè)含有多個(gè)字母的式子中,如果任意交換兩個(gè)字母的位置,式子的值都不變,這樣的式子就叫做對(duì)稱式,例如:,,,…含有兩個(gè)字母,的對(duì)稱式的基本對(duì)稱式是和,像,等對(duì)稱式都可以用,表示,例如:.
請(qǐng)根據(jù)以上材料解決下列問題:
(1)式子:①,②,③,④中,屬于對(duì)稱式的是 (填序號(hào))
(2)已知.
①若,求對(duì)稱式的值
②若,求對(duì)稱式的最大值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B>∠C,AD是BC邊上的高,AE平分∠BAC.
(1)若∠B=50°,∠C=30°,則∠DAE= .
(2)若∠B=60°,∠C=20°,則∠DAE= .
(3)由(1)(2)猜想∠DAE與∠B,∠C之間的關(guān)系為 ,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩商場(chǎng)以同樣價(jià)格出售同樣的商品,并且各自又推出不同的優(yōu)惠方案:
甲商場(chǎng):購(gòu)物超過200元后,超出200元的部分按90%收費(fèi);
乙商場(chǎng):購(gòu)物超過100元后,超出100元的部分按95%收費(fèi).
設(shè)小李在同一商場(chǎng)購(gòu)買商品的原價(jià)總和為元,則甲商場(chǎng)消費(fèi)的金額為元,乙商場(chǎng)消費(fèi)的金額為元.
(1)請(qǐng)分別求出,與之間的函數(shù)關(guān)系式;
(2)當(dāng)元時(shí),小李在哪家商場(chǎng)購(gòu)物更合算?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com