在⊙O中,AB=2AC,那么                                    (      )

A.AB=AC     B.AB=2AC    C.AB>2AC   D.AB<2AC

 

【答案】

D

【解析】解:如圖所示,連接BC,

∴AC=BC.

在△ABC中,AB<AC+BC,

∴AB<2AC.

故選D.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)(1)化簡:(a-
1
a
)÷
a2-2a+1
a
;
(2)已知:在△ABC中,AB=AC.
①設(shè)△ABC的周長為7,BC=y,AB=x(2≤x≤3).寫出y關(guān)于x的函數(shù)關(guān)系式;
②如圖,點(diǎn)D是線段BC上一點(diǎn),連接AD,若∠B=∠BAD,求證:△BAC∽△BDA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC=a,BC=b,且2a>b,BG⊥AC于G,DE⊥AB于E,DF⊥AC于F.
(1)在圖(1)中,D是BC邊上的中點(diǎn),計(jì)算DE+DF和BG的長(用a,b表示),并判斷DE+DF與BG的關(guān)系.
(2)在圖(2)中,D是線段BC上的任意一點(diǎn),DE+DF與BG的關(guān)系是否仍然成立?如果成立,證明你的結(jié)論;如果不成立,請說明理由.
(3)在圖(3)中,D是線段BC延長線上的點(diǎn),探究DE、DF與BG的關(guān)系.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,∠A=60°,BE⊥AC于E,延長BC到D,使CD=CE,連接DE,若△ABC的周長是24,BE=a,則△BDE的周長是
2a+12
2a+12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在△ABC中,AB=AC=2a,∠ABC=∠ACB=15° 求:S△ABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

現(xiàn)場學(xué)習(xí)題
問題背景:在△ABC中,AB、BC、AC三邊的長分別為
2
13
、
17
,求這個(gè)三角形的面積.
小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.
(1)請你將△ABC的面積直接填寫在橫線上.
2.5
2.5

思維拓展:
(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法.若△ABC三邊的長分別為
2
a
、2
5
a
、
26
a
(a>0),請利用圖2的正方形網(wǎng)格(每個(gè)小正方形的邊長為a)畫出相應(yīng)的△ABC,并求出它的面積是:
3a2
3a2

查看答案和解析>>

同步練習(xí)冊答案