精英家教網 > 初中數學 > 題目詳情

若方程的解是正數,求a的取值范圍.關于這道題,有位同學作出如下解答:解:   去分母得,2x+a=-x+2  化簡,得3x=2-a. 故x=  要使方程的根為正數,必須,得a<2. 所以,當a<2時,方程的解是正數.上述解法是否有誤?若有錯誤請說明錯誤的原因,并寫出正確解答;若沒有錯誤,請說出每一步解法的依據.

解:上述解法有錯誤!

    由分式方程    知x-2≠0,所以x≠2

∴    ≠2   得a≠-4

所以當a<2 且a≠-4時方程的解是正數。

練習冊系列答案
相關習題

科目:初中數學 來源:2011-2012年重慶市八年級4月月考數學試卷(解析版) 題型:填空題

若方程的解是正數,求a的取值范圍           .

 

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

閱讀材料題
對于題目“若方程數學公式的解是正數,求a的取值范圍.”有同學作了如下解答:
解:去分母,得 2x+a=-x+2
化簡,得3x=2-a
所以 數學公式欲使方程的解為正數,必須數學公式,得a<2
所以當a<2時,方程數學公式的解是正數.
上述解法是否有誤?若有錯誤,請指出錯誤原因,并寫出正確解法;
若無錯誤,請說明每一步變形的依據.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

若方程數學公式的解是正數,求a的取值范圍.關于這道題,有位同學做出如下解答:
解:去分母得:2x+a=-x+2.化簡,得3x=2-a.故數學公式
欲使方程的根為正數,必須數學公式>0,得a<2.
所以,當a<2時,方程數學公式的解是正數.
上述解法是否有誤?若有錯誤請說明錯誤的原因,并寫出正確解答;若沒有錯誤,請說出每一步解法的依據.

查看答案和解析>>

科目:初中數學 來源:同步題 題型:解答題

若方程的解是正數,求a的取值范圍。關于這道題,有位同學作出如下解答:    
解:去分母得:2x+a=-x+2,    
化簡得
欲使方程的根為正數,必須>0,得a<2,    
所以當a<2時方程1的解是正數
上述解法是否有誤?若有錯誤,請說明錯的原因,并寫出正確解答;若沒有錯誤,請說出每一步解法的依據。

查看答案和解析>>

同步練習冊答案