如圖,AD是△ABC的角平分線,以點(diǎn)C為圓心,CD為半徑作圓交BC的延長(zhǎng)線于點(diǎn)E,交AD于點(diǎn)F,交AE于點(diǎn)M,且∠B=∠CAE,EF:FD=4:3.
(1)求證:點(diǎn)F是AD的中點(diǎn);
(2)求cos∠AED的值;
(3)如果BD=10,求半徑CD的長(zhǎng).
(1)證明見(jiàn)解析;(2);(3)5.
【解析】
試題分析:(1)欲證點(diǎn)F是AD的中點(diǎn),只須證AF=DF,可以證明△AEF≌△DEF得出;
(2)求∠AED的余弦值,即求ME:DM,由已知條件,勾股定理,切割線定理的推論可以求出;
(3)根據(jù)△AEC∽△BEA易得AE2=CE•BE,因此(5k)2=k•(10+5k),解得k=2,所以CD=k=5.
試題解析:(1)證明:∵AD是△ABC的角平分線,
∴∠1=∠2,
∵∠ADE=∠1+∠B,∠DAE=∠2+∠3,且∠B=∠3,
∴∠ADE=∠DAE,
∴ED=EA,
∵ED為⊙O直徑,
∴∠DFE=90°,
∴EF⊥AD,
∴點(diǎn)F是AD的中點(diǎn);
(2)解:連接DM,
設(shè)EF=4k,DF=3k,
則ED=,
∵AD•EF=AE•DM,
∴DM=,
∴ME=,
∴cos∠AED=;
(3)∵∠B=∠3,∠AEC為公共角,
∴△AEC∽△BEA,
∴AE:BE=CE:AE,
∴AE2=CE•BE,
∴(5k)2=k•(10+5k),
∵k>0,
∴k=2,
∴CD=k=5.
考點(diǎn): 1.圓周角定理;2.相似三角形的判定與性質(zhì);3.銳角三角函數(shù)的定義.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com