【題目】在平面直角坐標(biāo)系中,已知拋物線和直線l:y=kx+b,點A(-3,-3),B(1,-1)均在直線l上.
(1)若拋物線C與直線l有交點,求a的取值范圍;
(2)當(dāng)a=-1,二次函數(shù)的自變量x滿足m≤x≤m+2時,函數(shù)y的最大值為-4,求m的值;
(3)若拋物線C與線段AB有兩個不同的交點,請直接寫出a的取值范圍.
【答案】(1)a≤且a≠0;(2)m=-3或m=3;(3)或a≤-2;
【解析】
(1)點,代入,求出;聯(lián)立與,則有,即可求解;
(2)根據(jù)題意可得,,當(dāng)時,有,或;①在左側(cè),隨的增大而增大,時,有最大值,;
②在對稱軸右側(cè),隨最大而減小,時,有最大值;
(3)①時,時,,即;
②時,時,,即,直線的解析式為,拋物線與直線聯(lián)立:,,則,即可求的范圍.
解:(1)點,代入,
,
,
;
聯(lián)立與,則有,
拋物線與直線有交點,
,
a≤且a≠0;
(2)根據(jù)題意可得,,
,
拋物線開口向下,對稱軸,
時,有最大值,
∴當(dāng)時,有,
或,
①在左側(cè),隨的增大而增大,
時,有最大值,
;
②在對稱軸右側(cè),隨最大而減小,
時,有最大值;
綜上所述:m=-3或m=3;
(3)①時,時,,
即;
②時,時,,
即,
直線的解析式為,
拋物線與直線聯(lián)立:,
,
,
,
的取值范圍為或a≤-2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=+b(a、b為常數(shù)且a≠0)中,當(dāng)x=2時,y=4;當(dāng)x=﹣1時,y=1.請對該函數(shù)及其圖象進行如下探究:
(1)求該函數(shù)的解析式,并直接寫出該函數(shù)自變量x的取值范圍;
(2)請在下列直角坐標(biāo)系中畫出該函數(shù)的圖象;
(3)請你在上方直角坐標(biāo)系中畫出函數(shù)y=2x的圖象,結(jié)合上述函數(shù)的圖象,寫出不等式+b≤2x的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)圖象的頂點坐標(biāo)為,與坐標(biāo)軸交于B、C、D三點,且B點的坐標(biāo)為.
(1)求二次函數(shù)的解析式;
(2)在二次函數(shù)圖象位于x軸上方部分有兩個動點M、N,且點N在點M的左側(cè),過M、N作x軸的垂線交x軸于點G、H兩點,當(dāng)四邊形MNHG為矩形時,求該矩形周長的最大值;
(3)當(dāng)矩形MNHG的周長最大時,能否在二次函數(shù)圖象上找到一點P,使的面積是矩形MNHG面積的?若存在,求出該點的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解九年級學(xué)生的體育達標(biāo)情況,隨機抽取名九年級學(xué)生進行體育達標(biāo)項目測試,測試成績?nèi)缦卤,請根?jù)表中的信息,解答下列問題:
(1)該校九年級有名學(xué)生,估計體育測試成績?yōu)?/span>分的學(xué)生人數(shù);
(2)該校體育老師要對本次抽測成績?yōu)?/span>分的甲、乙、丙、丁名學(xué)生進行分組強化訓(xùn)練,要求兩人一組,求甲和乙恰好分在同一組的概率.(用列表或樹狀圖方法解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某地七年級學(xué)生身高情況,隨機抽取部分學(xué)生,測得他們的身高(單位:cm),并繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中提供的信息,解答下列問題.
(1)填空:樣本容量為 ,a= ;
(2)把頻數(shù)分布直方圖補充完整;
(3)若從該地隨機抽取1名學(xué)生,估計這名學(xué)生身高低于160cm的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】天門山索道是世界最長的高山客運索道,位于張家界天門山景區(qū).在一次檢修維護中,檢修人員從索道A處開始,沿A﹣B﹣C路線對索道進行檢修維護.如圖:已知米,米,AB與水平線的夾角是,BC與水平線的夾角是.求:本次檢修中,檢修人員上升的垂直高度是多少米?(結(jié)果精確到1米,參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB為圓O的切線,切點分別為A、B,PO交AB于點C,PO的延長線交圓O于點D,下列結(jié)論不一定成立的是( )
A. PA=PBB. ∠BPD=∠APDC. AB⊥PDD. AB平分PD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司有如圖所示的甲、乙、丙、丁四個生產(chǎn)基地.現(xiàn)決定在其中一個基地修建總倉庫,以方便公司對各基地生產(chǎn)的產(chǎn)品進行集中存儲.已知甲、乙、丙、丁各基地的產(chǎn)量之比等于4:5:4:2,各基地之間的距離之比a:b:c:d:e=2:3:4:3:3(因條件限制,只有圖示中的五條運輸渠道),當(dāng)產(chǎn)品的運輸數(shù)量和運輸路程均相等時,所需的運費相等.若要使總運費最低,則修建總倉庫的最佳位置為( 。
A. 甲B. 乙C. 丙D. 丁
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在Rt△ACB中,∠C=90°,BC=3cm,AC=3cm,點P由B點出發(fā)沿BA方向向點A勻速運動,速度為2cm/s;點Q由A點出發(fā)沿AC方向向點C勻速運動,速度為cm/s;若設(shè)運動的時間為t(s)(0<t<3),解答下列問題:
(1)如圖①,連接PC,當(dāng)t為何值時△APC∽△ACB,并說明理由;
(2)如圖②,當(dāng)點P,Q運動時,是否存在某一時刻t,使得點P在線段QC的垂直平分線上,請說明理由;
(3)如圖③,當(dāng)點P,Q運動時,線段BC上是否存在一點G,使得四邊形PQGB為菱形?若存在,試求出BG長;若不存在請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com