【題目】如圖為放置在水平桌面上的臺燈的平面示意圖,燈臂AO長為40cm,與水平面所形成的夾角∠OAM為75°.由光源O射出的邊緣光線OC,OB與水平面所形成的夾角∠OCA,∠OBA分別為90°和30°,求該臺燈照亮水平面的寬度BC(不考慮其他因素,結果精確到0.1cm.溫馨提示:sin75°≈0.97,cos75°≈0.26, ).

【答案】解:在直角三角形ACO中,sin75°= = ≈0.97, 解得OC≈38.8,
在直角三角形BCO中,tan30°= =
解得BC≈67.3.
答:該臺燈照亮水平面的寬度BC大約是67.3cm
【解析】根據(jù)sin75°= = ,求出OC的長,根據(jù)tan30°= ,再求出BC的長,即可求解.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一農(nóng)戶要建一個矩形豬舍,豬舍的一邊利用長為12m的住房墻,另外三邊用25m長的建筑材料圍成,為方便進出,在垂直于住房墻的一邊留一個1m寬的門,所圍矩形豬舍的長、寬分別為多少時,豬舍面積為80m2?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,A=40°,ABC的外角∠CBD的平分線BEAC的延長線于點E.

(1)求∠CBE的度數(shù);

(2)過點DDFBE,交AC的延長線于點F,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( )
A.一個游戲的中獎概率是 ,則做10次這樣的游戲一定會中獎
B.一組數(shù)據(jù)6,8,7,8,8,9,10的眾數(shù)和中位數(shù)都是8
C.為了解全國中學生的心理健康情況,應該采用普查的方式
D.若甲組數(shù)據(jù)的方差S2=0.01,乙組數(shù)據(jù)的方差S2=0.1,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合題。
(1)計算:﹣22+| ﹣4|+( 1+2tan60°.
(2)先化簡,再求值:( )÷ ,其中x是不等式3x+7>1的負整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了響應“足球進校園”的目標,某校計劃為學校足球隊購買一批足球,已知購買2個A品牌的足球和3個B品牌的足球共需380元;購買4個A品牌的足球和2個B品牌的足球共需360元.
(1)求A,B兩種品牌的足球的單價.
(2)求該校購買20個A品牌的足球和2個B品牌的足球的總費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線與x軸交于A(﹣1,0)、B(5,0)兩點,與y軸交于點C(0,5).

(1)求該拋物線所對應的函數(shù)關系式;
(2)D是笫一象限內(nèi)拋物線上的一個動點(與點C、B不重合),過點D作DF⊥x軸于點F,交直線BC于點E,連結BD、CD.設點D的橫坐標為m,△BCD的面積為S.
①求S關于m的函數(shù)關系式及自變量m的取值范圍;
②當m為何值時,S有最大值,并求這個最大值;
③直線BC能否把△BDF分成面積之比為2:3的兩部分?若能,請求出點D的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ECD的中點,連接AE、BE,BEAE,延長AEBC的延長線于點F.

求證:(1)FC=AD;

(2)AB=BC+AD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某企業(yè)接到一批粽子生產(chǎn)任務,按要求在15天內(nèi)完成,約定這批粽子的出廠價為每只6元,為按時完成任務,該企業(yè)招收了新工人,設新工人李明第x天生產(chǎn)的粽子數(shù)量為y只,y與x滿足下列關系式: y=
(1)李明第幾天生產(chǎn)的粽子數(shù)量為420只?
(2)如圖,設第x天每只粽子的成本是p元,p與x之間的關系可用圖中的函數(shù)圖象來刻畫.若李明第x天創(chuàng)造的利潤為w元,求w與x之間的函數(shù)表達式,并求出第幾天的利潤最大,最大利潤是多少元?(利潤=出廠價﹣成本)
(3)設(2)小題中第m天利潤達到最大值,若要使第(m+1)天的利潤比第m天的利潤至少多48元,則第(m+1)天每只粽子至少應提價幾元?

查看答案和解析>>

同步練習冊答案